Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Phys ; 11(1): 26, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38485872

ABSTRACT

BACKGROUND: 155Tb represents a potentially useful radionuclide for diagnostic medical applications, but its production remains a challenging problem, in spite of the fact that many production routes have been already investigated and tested. A recent experimental campaign, conducted with low-energy proton beams impinging on a 155Gd target with 91.9% enrichment, demonstrated a significant co-production of 156gTb, a contaminant of great concern since its half-life is comparable to that of 155Tb and its high-energy γ emissions severely impact on the dose released and on the quality of the SPECT images. In the present investigation, the isotopic purity of the enriched 155Gd target necessary to minimize the co-production of contaminant radioisotopes, in particular 156gTb, was explored using various computational simulations. RESULTS: Starting from the recent experimental data obtained with a 91.9% 155Gd-enriched target, the co-production of other Tb radioisotopes besides 155Tb has been theoretically evaluated using the Talys code. It was found that 156Gd, with an isotopic content of 5.87%, was the principal contributor to the co-production of 156gTb. The analysis also demonstrated that the maximum amount of 156Gd admissible for 155Tb production with a radionuclidic purity higher than 99% was 1%. A less stringent condition was obtained through computational dosimetry analysis, suggesting that a 2% content of 156Gd in the target can be tolerated to limit the dose increase to the patient below the 10% limit. Moreover, it has been demonstrated that the imaging properties of the produced 155Tb are not severely affected by this level of impurity in the target. CONCLUSIONS: 155Tb can be produced with a quality suitable for medical applications using low-energy proton beams and 155Gd-enriched targets, if the 156Gd impurity content does not exceed 2%. Under these conditions, the dose increase due to the presence of contaminant radioisotopes remains below the 10% limit and good quality images, comparable to those of 111In, are guaranteed.

2.
Article in English | MEDLINE | ID: mdl-37889221

ABSTRACT

The anatomy of the external carotid artery and its variations are of ground significance in head and neck surgery. During a dissection of a male cadaver, an undescribed common trunk between superior thyroid, superior laryngeal, and lingual arteries was found. The variations of the anterior cervical branches of the external carotid artery and their clinical implications are discussed. The described unusual branching pattern of the external carotid artery must always be considered in invasive or non-invasive procedures because it may lead to unexpected complications.

3.
Med Phys ; 46(3): 1437-1446, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30661241

ABSTRACT

PURPOSE: Technetium-99m (99m Tc) is the radioisotope most widely used in diagnostic nuclear medicine. It is readily available from 99 Mo/99m Tc generators as the ß- decay product of the 99 Mo (T½  = 66 h) parent nuclide. This latter is obtained as a fission product in nuclear reactors by neutron-induced reactions on highly enriched uranium. Alternative production routes, such as direct reactions using proton beams on specific target materials [100 Mo(p,2n)99m Tc], have the potential to be both reliable and relatively cost-effective. However, results showed that the 99m Tc extracted from proton-bombarded 100 Mo-enriched targets contains small quantities of several Tc radioisotopes (93m Tc, 93 Tc, 94 Tc, 94m Tc, 95 Tc, 95m Tc, 96 Tc, and 97m Tc). The aim of this work was to estimate the dose increase (DI) due to the contribution of Tc radioisotopes generated as impurities, after the intravenous injection of four radiopharmaceuticals prepared with cyclotron-produced 99m Tc (CP-99m Tc) using 99.05% 100 Mo-enriched metallic targets. METHODS: Four 99m Tc radiopharmaceuticals (pertechnetate, sestamibi (MIBI), hexamethylpropylene-amine oxime (HMPAO) and disodium etidronate (HEDP)) were considered in this study. The biokinetic models reported by the International Commission on Radiological Protection (ICRP) for each radiopharmaceutical were used to define the main source organs and to calculate the number of disintegrations per MBq that occurred in each source organ (Nsource ) for each Tc radioisotope present in the CP-99m Tc solution. Then, target organ equivalent doses and effective dose were calculated for each Tc radioisotope with the OLINDA/EXM software versions 1.1 and 2.0, using the calculated Nsource values and the adult male phantom as program inputs. Total effective dose produced by all Tc isotopes impurities present in the CP-99m Tc solution was calculated using the fraction of total activity corresponding to each radioisotope and compared with the effective dose delivered by the generator-produced 99m Tc. RESULTS: In all cases, the total effective DI of CP-99m Tc radiopharmaceuticals calculated with either versions of the OLINDA software was less than 10% from 6 up to 12 h after EOB. 94m Tc and 93m Tc are the Tc radioisotopes with the highest concentration in the CP-99m Tc solution at EOB. However, their contribution to DI 6 h after EOB is minimal, due to their short half-lives. The radioisotopes with the largest contribution to the effective DI are 96 Tc, followed by 95 Tc and 94 Tc. This is due to the types of their emissions and relatively long half-lives, although their concentration in the CP-99m Tc solution is five times lower than that of 94m Tc and 93m Tc at the EOB. CONCLUSIONS: The increase in the radiation dose caused by other Tc radioisotopes contained in CP-99m Tc produced as described here is quite low. Even though the concentrations of the 94 Tc and 95 Tc radioisotopes in the CP-99m Tc solution exceed the limits established by the European Pharmacopoeia, CP-99m Tc radiopharmaceuticals could be used in routine nuclear medicine diagnostic studies if administered from 6 to 12 h after the EOB, thus maintaining the effective DI within the 10% limit.


Subject(s)
Cyclotrons/instrumentation , Phantoms, Imaging , Radiochemistry/methods , Radiopharmaceuticals/chemistry , Technetium/chemistry , Adult , Drug Contamination , Humans , Male , Positron-Emission Tomography/methods , Radiation Dosage , Radiopharmaceuticals/pharmacokinetics , Technetium/pharmacokinetics , Tissue Distribution
4.
Appl Radiat Isot ; 139: 325-331, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29936404

ABSTRACT

In the last years, the technology for producing the important medical radionuclide technetium-99m by cyclotrons has become sufficiently mature to justify its introduction as an alternative source of the starting precursor [99mTc][TcO4]- ubiquitously employed for the production of 99mTc-radiopharmaceuticals in hospitals. These technologies make use almost exclusively of the nuclear reaction 100Mo(p,2n)99mTc that allows direct production of Tc-99m. In this study, it is conjectured that this alternative production route will not replace the current supply chain based on the distribution of 99Mo/99mTc generators, but could become a convenient emergency source of Tc-99m only for in-house hospitals equipped with a conventional, low-energy, medical cyclotron. On this ground, an outline of the essential steps that should be implemented for setting up a hospital radiopharmacy aimed at the occasional production of Tc-99m by a small cyclotron is discussed. These include (1) target production, (2) irradiation conditions, (3) separation/purification procedures, (4) terminal sterilization, (5) quality control, and (6) Mo-100 recovery. To address these issues, a comprehensive technology for cyclotron-production of Tc-99m, developed at the Legnaro National Laboratories of the Italian National Institute of Nuclear Physics (LNL-INFN), will be used as a reference example.


Subject(s)
Cyclotrons , Radiopharmaceuticals/isolation & purification , Technetium/isolation & purification , Humans , Nuclear Medicine Department, Hospital , Phantoms, Imaging , Pharmacy Service, Hospital , Quality Control , Radiopharmaceuticals/standards , Technetium/standards , Technology, Radiologic/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...