Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 74: 365-373, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28254306

ABSTRACT

Molecularly imprinted polymers (MIPs) in combination with magnetic nanoparticles, in a core@shell format, were studied for selective detection of 1-chloro-2,4-dinitrobenzene (CDNB), a powerful allergenic substance. Magnetic nanoparticles were prepared by the co-precipitation method and mixed with oleic acid (OA). This material was then encapsulated in three types of hydrophobic polymeric matrix, poly-(MA-co-EDGMA), poly-(AA-co-EDGMA), and poly-(1-VN-co-EDGMA), by the mini-emulsion method. These matrices were used due to their ability to interact specifically with the functional groups of the analyte. Finally, the MIP-CDNB was obtained on the magnetic-hydrophobic surfaces using precipitation polymerization in the presence of the analyte. XRD diffraction patterns suggested the presence of magnetite in the composite and SEM analysis revealed a nanoparticle size between 10 and 18nm. Under the optimized adsorption conditions, the magnetic-MIP material showed a higher adsorption capacity (5.1mgg-1) than its non-magnetic counterpart (4.2mgg-1). In tests of the selectivity of the magnetic-MIP towards CDNB, α-values of 2.5 and 10.4, respectively, were obtained for dichlorophenol and o-nitrophenol, two structurally similar compounds, and no adsorption was observed for any other non-analogous analyte. The magnetic-MIP and magnetic-NIP were applied using water enriched with 0.5mgL-1 of CDNB, achieving recovery values of 83.8(±0.8)% and 66(±1)%, respectively, revealing the suitability of the material for detection of CDNB.


Subject(s)
Allergens/analysis , Chromatography, High Pressure Liquid , Dinitrochlorobenzene/analysis , Magnetite Nanoparticles/chemistry , Molecular Imprinting , Polymers/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oleic Acid/chemistry , Particle Size , Polymers/chemical synthesis , Porosity , Reproducibility of Results , X-Ray Diffraction
2.
Food Chem ; 190: 460-467, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26212997

ABSTRACT

This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery.


Subject(s)
Biotin/analysis , Magnetics , Milk/chemistry , Molecular Imprinting/methods , Polymers/chemistry , Adsorption , Animals , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Microscopy, Electrochemical, Scanning , Nanoparticles , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...