Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 348: 119246, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37820430

ABSTRACT

Photocatalytic water decontamination has emerged as a highly promising technology for efficient and rapid water treatment, harnessing sustainable solar energy as its driving force. In this study, we prepared visible-light active Bi2S3/CoS2 composites for the degradation of naproxen (NPX) and the inactivation of Escherichia coli (E. coli). The homogeneous dispersion of CoS2 was stably integrated with Bi2S3, resulting in a significant enhancement of the specific surface area, efficient utilization of visible light, and effective separation of photogenerated charge carriers. Consequently, this synergistic photocatalytic system greatly facilitated the successful degradation of NPX and the inactivation of E. coli under visible-light irradiation. Compared to the pure Bi2S3 and CoS2 catalysts, the Bi2S3/CoS2 (1:2) composites displayed significantly enhanced photodegradation activity, achieving 96.46% (k = 0.2847 min-1) degradation of NPX within 90 min and maintaining good recyclability with no significant decline after six successive cycles. Additionally, the photocatalytic inactivation of E. coli results indicated that Bi2S3/CoS2 composites exhibited excellent performance, leading to the inactivation of 7 log10 cfu mL-1 of bacterial cells after 150 min of visible-light exposure. Scanning Electron Microscopy (SEM) and K+ ions leakage tests demonstrated that the destruction of the E. coli cell membrane structure resulted in cell death. The outcomes of this work suggest that Bi2S3/CoS2 composites hold significant potential for treating water contaminated with antibiotic and microbial pollutants.


Subject(s)
Escherichia coli , Naproxen , Naproxen/pharmacology , Naproxen/metabolism , Light , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Microscopy, Electron, Scanning , Catalysis
2.
Chemosphere ; 306: 135505, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35779680

ABSTRACT

A novel composite of multiwall carbon nanotube (MWCNT) supported V2O5 quantum dots decorated Bi2O3 hybrid was prepared by the simple wet-impregnation method, and the photocatalytic performance of the prepared samples was investigated against the photodegradation of ciprofloxacin (CIP). Herein, different samples of pristine, V2O5/Bi2O3 and MWCNT@V2O5/Bi2O3 hybrid photocatalyst were prepared and systematically characterized by various physicochemical techniques. The characterization results demonstrated that the introduction of MWCNT can change the energy band gap of V2O5/Bi2O3, and the band energies vary with a constituent of MWCNT@V2O5/Bi2O3 catalyst, in which MWCNT@V2O5/Bi2O3-5 (0.05 g@0.50 g:0.50 g) has the optimal band gap energy of 2.46 eV. The photocatalytic test demonstrates that the MWCNT@V2O5/Bi2O3-5 hybrid composites exhibited enhanced photocatalytic activity in CIP degradation compared to that pure and other photocatalyst and its degradation efficiency did not decrease significantly even after five cyclic experiments. The enhanced photocatalytic activity was due to the formation of heterojunction among MWCNT, V2O5 and Bi2O3, which distinctly improved the separation efficiency of the photogenerated charge carrier, thus increasing the degradation performance. This work gives a new approach to designing an efficient photocatalyst for contaminants degradation.


Subject(s)
Nanotubes, Carbon , Quantum Dots , Bismuth/chemistry , Ciprofloxacin , Light
3.
Sci Total Environ ; 834: 155322, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35447168

ABSTRACT

The effect of polyethylene microplastics (PE-MPs) on the disinfection of Escherichia coli (E. coli) by sodium hypochlorite was investigated in different pH value, ionic strength, and NOM concentration to illustrate the impact of MPs on the pathogenic bacteria disinfection efficiency in nature water environment. The results showed that PE-MPs tended to agglomerate rather than disperse due to their strong hydrophobicity in water. Within 30 s, about 1.5 log10 of E. coli was adsorbed on the surface of PE-MPs, forming subsequent protection for E. coli. Thus, the presence of PE-MPs reduced the inactivation rate of E. coli. As for the particle-free solutions, the higher solution pH, the presence of natural organic matter (NOM), and the higher concentrations of cations (monovalent Na+ and divalent Ca2+) were confirmed as the major influencing factors decreasing the E. coli disinfection efficiency. However, due to the adsorption and protection of PE-MPs on E. coli, the influences of complex chemistry factors on the inactivation of E. coli were reduced. The inactivation of E. coli in PE-MPs (20 NTU) solution was 1 log10 lower than that in particle-free solution under the same water quality conditions. Therefore, considering the complex water chemistry, the existence of MPs could be a potential challenge for disinfection efficiency in the water treatment plants.


Subject(s)
Microplastics , Water Pollutants, Chemical , Adsorption , Disinfection , Escherichia coli , Plastics , Polyethylene , Sodium Hypochlorite , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...