Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(10): 8261-8270, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38690886

ABSTRACT

This study aimed to develop a novel radiotracer using trastuzumab and the long-lived [52Mn]Mn isotope for HER2-targeted therapy selection and monitoring. A new Mn(II) chelator, BPPA, synthesized from a rigid bispyclen platform possessing a picolinate pendant arm, formed a stable and inert Mn(II) complex with favorable relaxation properties. BPPA was converted into a bifunctional chelator (BFC), conjugated to trastuzumab, and labeled with [52Mn]Mn isotope. In comparison to DOTA-GA-trastuzumab, the BPPA-trastuzumab conjugate exhibits a labeling efficiency with [52Mn]Mn approximately 2 orders of magnitude higher. In female CB17 SCID mice bearing 4T1 (HER2-) and MDA-MB-HER2+ (HER2+) xenografts, [52Mn]Mn-BPPA-trastuzumab demonstrated superior uptake in HER2+ cells on day 3, with a 3-4 fold difference observed on day 7. Overall, the hexadentate BPPA chelator proves to be exceptional in binding Mn(II). Upon coupling with trastuzumab as a BFC ligand, it becomes an excellent imaging probe for HER2-positive tumors. [52Mn]Mn-BPPA-trastuzumab enables an extended imaging time window and earlier detection of HER2-positive tumors with superior tumor-to-background contrast.


Subject(s)
Manganese , Mice, SCID , Positron-Emission Tomography , Receptor, ErbB-2 , Trastuzumab , Animals , Female , Mice , Cell Line, Tumor , Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Manganese/chemistry , Manganese/metabolism , Mice, Inbred BALB C , Picolinic Acids/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Receptor, ErbB-2/metabolism , Tissue Distribution , Trastuzumab/chemistry
2.
Int J Pharm ; 644: 123344, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37634663

ABSTRACT

Melanocortin-1 receptor (MC1-R) targeting alpha-melanocyte stimulating hormone-analogue (α-MSH) biomolecules labelled with α-emitting radiometal seem to be valuable in the targeted radionuclide therapy of MC1-R positive melanoma malignum (MM). Herein is reported the anti-tumor in vivo therapeutic evaluation of MC1-R-affine [213Bi]Bi-DOTA-NAPamide and HOLDamide treatment in MC1-R positive B16-F10 melanoma tumor-bearing C57BL/6J mice. On the 6th, 8th and 10th days post tumor cell inoculation; the treated groups of mice were intravenously injected with approximately 5 MBq of both amide derivatives. Beyond body weight and tumor volume assessment, [68Ga]Ga-DOTA-HOLDamide and NAPamide-based PET/MRI scans, and ex vivo biodistribution studies were executed 30,- and 90 min postinjection. In the PET/MRI imaging studies the B16-F10 tumors were clearly visualized with both 68Ga-labelled tracers, however, significantly lower tumor-to-muscle (T/M) ratios were observed by using [68Ga]Ga-DOTA-HOLDamide. After alpha-radiotherapy treatment the tumor size of the control group was larger relative to both treated cohorts, while the smallest tumor volumes were observed in the NAPamide-treated subclass on the 10th day. Relatively higher [213Bi]Bi-DOTA-NAPamide accumulation in the B16-F10 tumors (%ID/g: 2.71 ± 0.15) with discrete background activity led to excellent T/M ratios, particularly 90 min postinjection. Overall, the therapeutic application of receptor selective [213Bi]Bi-DOTA-NAPamide seems to be feasible in MC1-R positive MM management.


Subject(s)
Melanoma, Experimental , Receptor, Melanocortin, Type 1 , Animals , Mice , Mice, Inbred C57BL , Gallium Radioisotopes , Tissue Distribution , Melanocyte-Stimulating Hormones , Melanoma, Experimental/drug therapy , Melanoma, Experimental/radiotherapy
3.
J Pharm Biomed Anal ; 229: 115374, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37001274

ABSTRACT

Given the rising pervasiveness of melanocortin-1 receptor (MC1-R) positive melanoma malignum (MM) and pertinent metastases, radiolabelled receptor-affine alpha-melanocyte stimulating hormone-analogue (α-MSH analogue) imaging probes would be of crucial importance in timely tumor diagnostic assessment. Herein we aimed at investigating the biodistribution and the MM targeting potential of newly synthesized 213Bi-conjugated MC1-R specific peptide-based radioligands with the establishment of MC1-R overexpressing MM preclinical model. DOTA-conjugated NAP, -HOLD, -FOLD, -and MARSamide were labelled with 213Bi. Ex vivo biodistribution studies were conducted post-administration of 3.81 ± 0.32 MBq [213Bi]Bi-DOTA conjugated deriva-tives into twenty B16-F10 tumor-bearing C57BL/6 J and healthy mice. Organ Level Internal Dose Assessment (OLINDA) and IDAC-Dose were used to calculate translational data-based absorbed radiation dose in human organs. Moderate or low %ID/g uptake of [213Bi]Bi-DOTA conjugated NAP, -HOLD, -and MARSamide and significantly increased [213Bi]Bi-DOTA-FOLDamide accumulation was observed in the thoracic and abdominal organs (p ≤ 0.01). High [213Bi]Bi-DOTA-NAP (%ID/g:3.76 ± 0.96), -and FOLDamide (%ID/g:3.28 ± 0.95) tumor tracer activity confirmed their MC1-R-affinity. The bladder wall received the highest radiation absorbed dose followed by the kidneys (bladder wall: 1.95·10-2 and 8.97·10-2 mSv/MBq; kidneys: 7.47·10-3 vs. 5.88·10-2 mSv/MBq measured by IDAC and OLINDA; respectively) indicating the suitability of the NAPamide derivative for clinical use. These novel [213Bi]Bi-DOTA-linked peptide probes displaying meaningful MC1-R affinity could be promising molecular probes in MM imaging.


Subject(s)
Melanoma, Experimental , Humans , Animals , Mice , Melanoma, Experimental/diagnostic imaging , alpha-MSH , Receptor, Melanocortin, Type 1/metabolism , Tissue Distribution , Radiopharmaceuticals/chemistry , Mice, Inbred C57BL , Melanocyte-Stimulating Hormones
4.
Chemistry ; 29(21): e202203798, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36719326

ABSTRACT

The introduction of a phenolate pendant arm in place of an acetate on AAZTA- and DATA-like ligands resulted in hepta- and hexadentate chelators able to form Ga(III) complexes with thermodynamic stability and kinetic inertness higher than that of other Ga(III) complexes based on the parent 6-amino-6-methylperhydro-1,4-diazepine scaffold. In particular, the heptadentate AAZ3A-endoHB with a phenolate arm on an endocyclic N-atom shows a logKGaL of 27.35 and a remarkable resistance to hydroxide coordination up to basic pH (pH>9). This behaviour allows to also improve the kinetic inertness of the complex showing a dissociation half-life (t1/2 ) at pH 7.4 of 76 h. Although also the hexadentate AAZ2A-exoHB chelator forms a stable (logKGaL =24.69) and inert (t1/2 =33 h at pH 7.4) Ga(III) complex, the 68 Ga labelling showed a better radiochemical yield with AAZ3A-endoHB, especially at room temperature. Thus, a bifunctional chelator of AAZ3A-endoHB was synthesized bearing an isothiocyanate group that was conjugated to the N-terminus of a c(RGD) peptide for integrin receptor targeting. Finally, the conjugate was successfully labelled with 68 Ga isotope, and the resulting radiotracer tested for its stability in human serum and then in vivo for targeting B16-F10 tumours with miniPET imaging.


Subject(s)
Chelating Agents , Neoplasms , Humans , Chelating Agents/chemistry , Arm , Gallium Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Positron-Emission Tomography/methods
5.
Diagnostics (Basel) ; 13(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36673046

ABSTRACT

Among humanized monoclonal antibodies, bevacizumab specifically binds to vascular endothelial growth factor A (VEGF-A). VEGF-A is an overexpressed biomarker in cervix carcinoma and is involved in the development and maintenance of tumor-associated neo-angiogenesis. The non-invasive positron emission tomography using radiolabeled target-specific antibodies (immuno-PET) provides the longitudinal and quantitative assessment of tumor target expression. Due to antibodies having a long-circulating time, radioactive metal ions (e.g., 52Mn) with longer half-lives are the best candidates for isotope conjugation. The aim of our preclinical study was to assess the biodistribution and tumor-targeting potential of 52Mn-labeled DOTAGA-bevacizumab. The VEGF-A targeting potential of the new immuno-PET ligand was assessed by using the VEGF-A expressing KB-3-1 (human cervix carcinoma) tumor-bearing CB17 SCID mouse model and in vivo PET/MRI imaging. Due to the high and specific accumulation found in the subcutaneously located experimental cervix carcinoma tumors, [52Mn]Mn-DOTAGA-bevacizumab is a promising PET probe for the detection of VEGF-A positive gynecological tumors, for patient selection, and monitoring the efficacy of therapies targeting angiogenesis.

6.
Angew Chem Int Ed Engl ; 61(43): e202207120, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36073561

ABSTRACT

Targeted α therapy (TAT) is a promising tool in the therapy of cancer. The radionuclide 213 BiIII shows favourable physical properties for this application, but the fast and stable chelation of this metal ion remains challenging. Herein, we demonstrate that the mesocyclic chelator AAZTA quickly coordinates BiIII at room temperature, leading to a robust complex. A comprehensive study of the structural, thermodynamic and kinetic properties of [Bi(AAZTA)]- is reported, along with bifunctional [Bi(AAZTA-C4-COO- )]2- and the targeted agent [Bi(AAZTA-C4-TATE)]- , which incorporates the SSR agonist Tyr3 -octreotate. An unexpected increase in the stability and kinetic inertness of the metal chelate was observed for the bifunctional derivative and was maintained for the peptide conjugate. A cyclotron-produced 205/206 Bi mixture was used as a model of 213 Bi in labelling, stability, and biodistribution experiments, allowing the efficiency of [213 Bi(AAZTA-C4-TATE)]- to be estimated. High accumulation in AR42J tumours and reduced kidney uptake were observed with respect to the macrocyclic chelate [213 Bi(DOTA-TATE)]- .


Subject(s)
Bismuth , Chelating Agents , Chelating Agents/chemistry , Bismuth/chemistry , Tissue Distribution , Radioisotopes/therapeutic use , Gallium Radioisotopes , Radiopharmaceuticals/therapeutic use
7.
Pharmaceuticals (Basel) ; 15(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35745585

ABSTRACT

Hypoxia promotes angiogenesis, which is crucial for tumor growth, and induces malignant progression and increases the therapeutic resistance. Positron emission tomography (PET) enables the detection of the hypoxic regions in tumors using 2-nitroimidazole-based radiopharmaceuticals. We describe here a physicochemical study of the Sc(DO3AM-NI) complex, which indicates: (a) relatively slow formation of the Sc(DO3AM-NI) chelate in acidic solution; (b) lower thermodynamic stability than the reference Sc(DOTA); (c) however, it is substantially more inert and consequently can be regarded as an excellent Sc-binder system. In addition, we report a comparison of 44Sc-labeled DO3AM-NI with its known 68Ga-labeled analog as a hypoxia PET probe. The in vivo and ex vivo biodistributions of 44Sc- and 68Ga-labeled DO3AM-NI in healthy and KB tumor-bearing SCID mice were examined 90 and 240 min after intravenous injection. No significant difference was found between the accumulation of 44Sc- and 68Ga-labeled DO3AM-NI in KB tumors. However, a significantly higher accumulation of [68Ga]Ga(DO3AM-NI) was found in liver, spleen, kidney, intestine, lung, heart and brain than for [44Sc]Sc(DO3AM-NI), leading to a lower tumor/background ratio. The tumor-to-muscle (T/M) ratio of [44Sc]Sc(DO3AM-NI) was approximately 10-15-fold higher than that of [68Ga]Ga(DO3AM-NI) at all time points. Thus, [44Sc]Sc(DO3AM-NI) allows the visualization of KB tumors with higher resolution, making it a promising hypoxia-specific PET radiotracer.

8.
Pharmaceutics ; 13(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073528

ABSTRACT

Radiolabeled peptides possessing an Arg-Gly-Asp (RGD) motif are widely used radiopharmaceuticals for PET imaging of tumor angiogenesis due to their high affinity and selectivity to αvß3 integrin. This receptor is overexpressed in tumor and tumor endothelial cells in the case of numerous cancer cell lines, therefore, it is an excellent biomarker for cancer diagnosis. The galectin-3 protein is also highly expressed in tumor cells and N-acetyllactosamine is a well-established ligand of this receptor. We have developed a synthetic method to prepare a lactosamine-containing radiotracer, namely 68Ga-NODAGA-LacN-E[c(RGDfK)]2, for cancer diagnosis. First, a lactosamine derivative with azido-propyl aglycone was synthetized. Then, NODAGA-NHS was attached to the amino group of this lactosamine derivative. The obtained compound was conjugated to an E[c(RGDfK)]2 peptide with a strain-promoted click reaction. We have accomplished the radiolabeling of the synthetized NODAGA-LacN-E[c(RGDfK)]2 precursor with a positron-emitting 68Ga isotope (radiochemical yield of >95%). The purification of the labeled compound with solid-phase extraction resulted in a radiochemical purity of >99%. Subsequently, the octanol-water partition coefficient (log P) of the labeled complex was determined to be -2.58. In addition, the in vitro stability of 68Ga-NODAGA-LacN-E[c(RGDfK)]2 was investigated and it was found that it was stable under the examined conditions.

9.
Chemistry ; 27(5): 1849-1859, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33184913

ABSTRACT

Herein, the synthesis and an extensive characterization of two novel Gd(AAZTA) (AAZTA=6-amino-6-methylperhydro-1,4-diazepine tetra acetic acid) derivatives functionalized with short (C2 and C4 ) n-alkyl acid functions are reported. The carboxylate functionality is the site for further conjugations for the design of more specific contrast agents (CAs). Interestingly, it has been found that the synthesized complexes display enhanced properties for use as MRI contrast agents on their own. The stability constants determined by using potentiometric titration and UV/Vis spectrophotometry were slightly higher than the one reported for the parent Gd(AAZTA) complex. This observation might be accounted for by the larger sigma-electron donation of the acyl substituents with respect to the one provided by the methyl group in the parent complex. As far as concerns the kinetic stability, transmetallation experiments with endogenous ions (e.g. Cu2+ ) implied that the Gd3+ ions present in these Gd(AAZTA) derivatives show somewhat smaller susceptibility to chemical exchange towards these ions at 25 °C, close to the physiological condition. The 1 H NMR spectra of the complexes with EuIII and YbIII displayed a set of signals consistent with half the number of methylene protons present on each ligand. The number of resonances was invariant over a large range of temperatures, suggesting the occurrence of a fast interconversion between structural isomers. The relaxivity values (298 K, 20 MHz) were consistent with q=2 being equal to 8.8 mm-1 s-1 for the C2 derivative and 9.4 mm-1 s-1 for the C4 one, that is, sensibly larger than the one reported for Gd(AAZTA) (7.1 mm-1 s-1 ). Variable-temperature (VT)-T2 17 O NMR measurements showed, for both complexes, the presence of two populations of coordinated water molecules, one in fast and one in slow exchange with the bulk water. As the high-resolution 1 H NMR spectra of the analogs with EuIII and YbIII did not show the occurrence of distinct isomers (as frequently observed in other macrocyclic lanthanide(III)-containing complexes), we surmised the presence of two fast-interconverting isomers in solution. The analysis of the 17 O NMR VT-T2 profiles versus temperature allowed their relative molar fraction to be established as 35 % for the isomer with the fast exchanging water and 65 % for the isomer with the water molecules in slower exchange. Finally, 1 H NMRD profiles over an extended range of applied magnetic field strengths have been satisfactory fitted on the basis of the occurrence of the two interconverting species.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Magnetic Resonance Imaging/methods , Organometallic Compounds/chemistry , Protons
10.
Dalton Trans ; 49(42): 14863-14870, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33073806

ABSTRACT

The interactions of gadoterate meglumine, gadobutrol, gadoteridol and Gd(HB-DO3A) with bovine Type I collagen were investigated by ultrafiltration and dialysis. The affinity of the four agents to collagen is similar. However, the maximum adsorbed amount of GdIII-complexes decreases in the following order: gadoterate meglumine > gadobutrol > gadoteridol > Gd(HB-DO3A). Calculations with the open three-compartment model reveal that the structural homologs gadoteridol and Gd(HB-DO3A) have a lower adsorption onto collagen, which may explain the less prolonged in vivo retention of gadoteridol observed in soft tissues of rats.


Subject(s)
Collagen Type I/chemistry , Contrast Media/chemistry , Coordination Complexes/chemistry , Gadolinium/chemistry , Macrocyclic Compounds/chemistry , Animals , Cattle , Heterocyclic Compounds/chemistry , Kinetics , Ligands , Magnetic Resonance Imaging/methods , Meglumine/chemistry , Models, Molecular , Organometallic Compounds/chemistry , Rats , Structure-Activity Relationship , Thermodynamics
11.
Biomed Res Int ; 2020: 4952372, 2020.
Article in English | MEDLINE | ID: mdl-32832549

ABSTRACT

INTRODUCTION: Hypoxia-induced α ν ß 3 integrin and aminopeptidase N (APN/CD13) receptor expression play an important role in tumor neoangiogenesis. APN/CD13-specific 68Ga-NOTA-c(NGR), α ν ß 3 integrin-specific 68Ga-NODAGA-[c(RGD)]2, and hypoxia-specific 68Ga-DOTA-nitroimidazole enable the in vivo detection of the neoangiogenic process and the hypoxic regions in the tumor mass using positron emission tomography (PET) imaging. The aim of this study was to evaluate whether 68Ga-NOTA-c(NGR) and 68Ga-DOTA-nitroimidazole allow the in vivo noninvasive detection of the temporal changes of APN/CD13 expression and hypoxia in experimental He/De tumors using positron emission tomography. MATERIALS AND METHODS: 5 × 106 hepatocellular carcinoma (He/De) cells were used for the induction of a subcutaneous tumor model in Fischer-344 rats. He/De tumor-bearing animals were anaesthetized, and 90 min after intravenous injection of 10.2 ± 1.1 MBq 68Ga-NOTA-c(NGR) or 68Ga-NODAGA-[c(RGD)]2 (as angiogenesis tracers) or 68Ga-DOTA-nitroimidazole (for hypoxia imaging), whole-body PET/MRI scans were performed. RESULTS: Hypoxic regions and angiogenic markers (α v ß 3 integrin and APN/CD13) were determined using 68Ga-NOTA-c(NGR), 68Ga-DOTA-nitroimidazole, and 68Ga-NODAGA-[c(RGD)]2 in subcutaneously growing He/De tumors in rats. 68Ga-NOTA-c(NGR) showed the strong APN/CD13 positivity of He/De tumors in vivo, by which observation was confirmed by western blot analysis. By the qualitative analysis of PET images, heterogenous accumulation was found inside He/De tumors using all radiotracers. Significantly (p ≤ 0.01) higher SUVmean and SUVmax values were found in the radiotracer avid regions of the tumors than those of the nonavid areas using hypoxia and angiogenesis-specific radiopharmaceuticals. Furthermore, a strong correlation was found between the presence of angiogenic markers, the appearance of hypoxic regions, and the tumor volume using noninvasive in vivo PET imaging. CONCLUSION: 68Ga-DOTA-nitroimidazole and 68Ga-NOTA-c(NGR) are suitable diagnostic radiotracers for the detection of the temporal changes of hypoxic areas and neoangiogenic molecule (CD13) expression, which vary during tumor growth in a hepatocellular carcinoma model.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms, Experimental , Neovascularization, Pathologic/diagnostic imaging , Positron-Emission Tomography , Animals , Carcinoma, Hepatocellular/blood supply , Carcinoma, Hepatocellular/diagnostic imaging , Cell Hypoxia , Cell Line , Liver Neoplasms, Experimental/blood supply , Liver Neoplasms, Experimental/diagnostic imaging , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Rats , Rats, Inbred F344
12.
Chemistry ; 25(45): 10698-10709, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31149749

ABSTRACT

Two structurally constrained chelators based on a fused bicyclic scaffold, 4-amino-4-methylperhydro-pyrido[1,2-a][1,4]diazepin-N,N',N'-triacetic acids [(4R*,10aS*)-PIDAZTA (L1) and (4R*,10aR*)-PIDAZTA (L2)], were designed for the preparation of GaIII -based radiopharmaceuticals. The stereochemistry of the ligand scaffold has a deep impact on the properties of the complexes, with unexpected [Ga(L2)OH] species being superior in terms of both thermodynamic stability and inertness. This peculiar behavior was rationalized on the basis of molecular modeling and appears to be related to a better fit in size of GaIII into the cavity of L2. Fast and efficient formation of the GaIII chelates at room temperature was observed at pH values between 7 and 8, which enables 68 Ga radiolabeling under truly physiological conditions (pH 7.4).


Subject(s)
Bridged Bicyclo Compounds/chemistry , Chelating Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Crystallography, X-Ray , Density Functional Theory , Gallium Radioisotopes/chemistry , Half-Life , Humans , Hydrogen-Ion Concentration , Kinetics , Molecular Conformation , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Transferrin/chemistry
13.
Dalton Trans ; 47(37): 13006-13015, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30152821

ABSTRACT

H4dota and its analogues are routinely used for complexation of lanthanide radioisotopes in nuclear medicine. Many of the radioisotopes have short half-lives and, thus, the complexation rate plays an important role. Notwithstanding that, the relationship between ligand structures and complexation rates is not well understood. Here we report a complexation study of H4dota and its analogues bearing one phosphonate or phosphinate pendant arm. The substituents on the phosphinate group were non-coordinating (-H) or contained another coordinating group (-CH2N(CH2COOH)2, -CH2PO2H2 or -CH2NH2). The basicity of ligands, stability of reaction intermediates, formation rates of CeIII complexes, and 177LuIII radiolabelling were studied. The complexation rates and labelling yields do not show any correlation with ligand basicity. In contrast, the additional chelating group attached to the pendant arm plays an important role. A decreased complexation rate and lower labelling yield were found for compounds bearing an additional amino group, whereas improved properties were found for the compound bearing a geminal bis(phosphinate) pendant arm. It indicates that the introduction of chelating pendant arms with acidic coordinating groups might be a promising strategy to improve radiolabelling of macrocyclic carriers with metal radioisotopes.

14.
Front Chem ; 6: 170, 2018.
Article in English | MEDLINE | ID: mdl-29876344

ABSTRACT

In order to rationalize the influence of FeIII contamination on labeling with the 68Ga eluted from 68Ge/68Ga-generator, a detailed investigation was carried out on the equilibrium properties, formation and dissociation kinetics of GaIII- and FeIII-complexes of 1,4,7-triazacyclononane-1,4,7-tris(methylene[2-carboxyethylphosphinic acid]) (H6TRAP). The stability and protonation constants of the [Fe(TRAP)]3- complex were determined by pH-potentiometry and spectrophotometry by following the competition reaction between the TRAP ligand and benzhydroxamic acid (0.15 M NaNO3, 25°C). The formation rates of [Fe(TRAP)] and [Ga(TRAP)] complexes were determined by spectrophotometry and 31P-NMR spectroscopy in the pH range 4.5-6.5 in the presence of 5-40 fold HxTRAP(x-6) excess (x = 1 and 2, 0.15 M NaNO3, 25°C). The kinetic inertness of [Fe(TRAP)]3- and [Ga(TRAP)]3- was examined by the trans-chelation reactions with 10 to 20-fold excess of HxHBED(x-4) ligand by spectrophotometry at 25°C in 0.15 M NaCl (x = 0,1 and 2). The stability constant of [Fe(TRAP)]3- (logKFeL = 26.7) is very similar to that of [Ga(TRAP)]3- (logKGaL = 26.2). The rates of ligand exchange reaction of [Fe(TRAP)]3- and [Ga(TRAP)]3- with HxHBED(x-4) are similar. The reactions take place quite slowly via spontaneous dissociation of [M(TRAP)]3-, [M(TRAP)OH]4- and [M(TRAP)(OH)2]5- species. Dissociation half-lives (t1/2) of [Fe(TRAP)]3- and [Ga(TRAP)]3- complexes are 1.1 × 105 and 1.4 × 105 h at pH = 7.4 and 25°C. The formation reactions of [Fe(TRAP)]3- and [Ga(TRAP)]3- are also slow due to the formation of the unusually stable monoprotonated [*M(HTRAP)]2- intermediates [*logKGa(HL) = 10.4 and *logKFe(HL) = 9.9], which are much more stable than the [*Ga(HNOTA)]+ intermediate [*logKGa(HL) = 4.2]. Deprotonation and transformation of the monoprotonated [*M(HTRAP)]2- intermediates into the final complex occur via OH--assisted reactions. Rate constants (kOH) characterizing the OH--driven deprotonation and transformation of [* Ga(HTRAP)]2- and [*Fe(HTRAP)]2- intermediates are 1.4 × 105 M-1s-1 and 3.4 × 104 M-1s-1, respectively. In conclusion, the equilibrium and kinetic properties of [Fe(TRAP)] and [Ga(TRAP)] complexes are remarkably similar due to the close physico-chemical properties of FeIII and GaIII-ions. However, a slightly faster formation of [Ga(TRAP)] over [Fe(TRAP)] provides a rationale for a previously observed, selective complexation of 68GaIII in presence of excess FeIII.

15.
Inorg Chem ; 57(10): 6107-6117, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29746106

ABSTRACT

Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [68Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H2O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)]- (MIII= GaIII, CeIII, EuIII, YIII, and LuIII) complexes were investigated in H2O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H2O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K1H and log K2H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)]- complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H2DOTA)]+ intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H2O (*M(HL) kH2O) and OH- (*M(HL) kOH) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) kH2O values increase from CeIII to LuIII. However, the log KM(HL)H protonation constants, analogous to the log KH2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.

16.
Front Chem ; 6: 107, 2018.
Article in English | MEDLINE | ID: mdl-29692987

ABSTRACT

Due to its 4 carbonic acid groups being available for bioconjugation, the cyclen tetraphosphinate chelator DOTPI, 1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetrakis[methylene(2-carboxyethylphosphinic acid)], represents an ideal scaffold for synthesis of tetrameric bioconjugates for labeling with radiolanthanides, to be applied as endoradiotherapeuticals. We optimized a protocol for bio-orthogonal DOTPI conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), based on the building block DOTPI(azide)4. A detailed investigation of kinetic properties of Cu(II)-DOTPI complexes aimed at optimization of removal of DOTPI-bound copper by transchelation. Protonation and equilibrium properties of Ca(II)-, Zn(II), and Cu(II)-complexes of DOTPI and its tetra-cyclohexylamide DOTPI(Chx)4 (a model for DOTPI conjugates) as well as kinetic inertness (transchelation challenge in the presence of 20 to 40-fold excess of EDTA) were investigated by pH-potentiometry and spectrophotometry. Similar stability constants of CaII-, ZnII, and CuII-complexes of DOTPI (logK(CaL) = 8.65, logK(ZnL = 15.40, logK(CuL) = 20.30) and DOTPI(Chx)4 (logK(CaL) = 8.99, logK(ZnL) = 15.13, logK(CuL) = 20.42) were found. Transchelation of Cu(II)-complexes occurs via proton-assisted dissociation, whereafter released Cu(II) is scavenged by EDTA. The corresponding dissociation rates [kd = 25 × 10-7 and 5 × 10-7 s-1 for Cu(DOTPI) and Cu(DOTPI(Chx)4), respectively, at pH 4 and 298 K] indicate that conjugation increases the kinetic inertness by a factor of 5. However, demetallation is completed within 4.5 and 7.2 h at pH 2 and 25°C, respectively, indicating that Cu(II) removal after formation of CuAAC can be achieved in an uncomplicated manner by addition of excess H4EDTA. For proof-of-principle, tetrameric DOTPI conjugates of the prostate-specific membrane antigen (PSMA) targeting motif Lys-urea-Glu (KuE) were synthesized via CuAAC as well as dibenzo-azacyclooctine (DBCO) based, strain-promoted click chemistry (SPAAC), which were labeled with Lu-177 and subsequently evaluated in vitro and in SCID mice bearing subcutaneous LNCaP tumor (PSMA+ human prostate carcinoma) xenografts. High affinities (3.4 and 1.4 nM, respectively) and persistent tumor uptakes (approx. 3.5% 24 h after injection) confirm suitability of DOTPI-based tetramers for application in targeted radionuclide therapy.

17.
Chem Commun (Camb) ; 52(75): 11235-8, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27560302

ABSTRACT

Kinetic inertness is a key property for a Gd-based contrast agent. The Gd(III) complex of a cyclohexyl-fused AAZTA derivative shows the highest kinetic inertness for non-macrocyclic bis hydrated (q = 2) Gd(III)-complexes with a dissociation half-life of 91 years under physiological conditions, very close to that of macrocyclic clinically approved contrast agents. It also shows optimal relaxometric performance (r1 = 8.3 mM(-1) s(-1) at 20 MHz and 25 °C) due to the presence of two inner sphere water molecules in fast exchange with bulk water and not displaced by endogenous anions.

18.
Dalton Trans ; 44(24): 11137-46, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-25999035

ABSTRACT

Due to its 3 carbonic acid groups being available for bioconjugation, the TRAP chelator (1,4,7-triazacyclononane-1,4,7-tris(methylene(2-carboxyethylphosphinic acid))) is chosen for the synthesis of trimeric bioconjugates for radiolabelling. We optimized a protocol for bio-orthogonal TRAP conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), including a detailed investigation of kinetic properties of Cu(II)-TRAP complexes. TRAP building blocks for CuAAC, TRAP(alkyne)3 and TRAP(azide)3 were obtained by amide coupling of propargylamine/3-azidopropyl-1-amine, respectively. For Cu(II) complexes of neat and triply amide-functionalized TRAP, the equilibrium properties as well as pseudo-first-order Cu(II)-transchelation, using 10 to 30 eq. of NOTA and EDTA, were studied by UV-spectrophotometry. Dissociation of any Cu(II)-TRAP species was found to be independent on the nature or excess of a competing chelator, confirming a proton-driven two-step mechanism. The respective thermodynamic stability constants (log K(ML): 19.1 and 17.6) and dissociation rates (k: 38 × 10(-6) and 7 × 10(-6) s(-1), 298 K, pH 4) show that the Cu(II) complex of the TRAP-conjugate possesses lower thermodynamic stability but higher kinetic inertness. At pH 2-3, its demetallation with NOTA was complete within several hours/days at room temperature, respectively, enabling facile Cu(II) removal after click coupling by direct addition of NOTA trihydrochloride to the CuAAC reaction mixture. Notwithstanding this, an extrapolated dissociation half life of >100 h at 37 °C and pH 7 confirms the suitability of TRAP-bioconjugates for application in Cu-64 PET (cf. t(1/2)(Cu-64) = 12.7 h). To showcase advantages of the method, TRAP(DUPA-Pep)3, a trimer of the PSMA inhibitor DUPA-Pep, was synthesized using 1 eq. TRAP(alkyne)3, 3.3 eq. DUPA-Pep-azide, 10 eq. Na ascorbate, and 1.2 eq. Cu(II)-acetate. Its PSMA affinity (IC50), determined by the competition assay on LNCaP cells, was 18-times higher than that of the corresponding DOTAGA monomer (IC50: 2 ± 0.1 vs. 36 ± 4 nM), resulting in markedly improved contrast in Ga-68-PET imaging. In conclusion, the kinetic inertness profile of Cu(II)-TRAP conjugates allows for simple Cu(II) removal after click functionalisation by means of transchelation, but also confirms their suitability for Cu-64-PET as demonstrated previously (Dalton Trans., 2012, 41, 13803).


Subject(s)
Chelating Agents/chemistry , Click Chemistry , Copper Radioisotopes/chemistry , Gallium Radioisotopes/chemistry , Phosphinic Acids/chemistry , Radiopharmaceuticals/chemistry , Alkynes/chemistry , Animals , Azides/chemistry , Chelating Agents/chemical synthesis , Chelating Agents/pharmacokinetics , Copper Radioisotopes/pharmacokinetics , Cycloaddition Reaction , Gallium Radioisotopes/pharmacokinetics , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacokinetics , Mice, Nude , Neoplasms/diagnostic imaging , Phosphinic Acids/chemical synthesis , Phosphinic Acids/pharmacokinetics , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics
19.
Dalton Trans ; 44(12): 5467-78, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25695351

ABSTRACT

A complete thermodynamic and kinetic solution study on lanthanide(III) complexes with monoacetamide (DOTAMA, L1) and monopropionamide (DOTAMAP, L2) derivatives of DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was undertaken with the aim to elucidate their stability and inertness in aqueous media. The stability constants of GdL1 and GdL2 are comparable, whereas a more marked difference is found in the kinetic inertness of the two complexes. The formation of the Eu(III) and Ce(III) complexes takes place via the formation of the protonated intermediates which can deprotonate and transform into the final complex through a OH(-) assisted pathway. GdL2 shows faster rates of acid catalysed decomplexation with respect to GdL1, which has a kinetic inertness comparable to GdDOTA. Nevertheless, GdL2 is one order of magnitude more inert than GdDO3A. A novel DOTAMAP-based bifunctional chelating ligand and its deoxycholic acid derivative (L5) were also synthesized. Since the coordinated water molecule in GdL2 is characterized by an exchange rate ca. two orders of magnitude greater than in GdL1, the relaxivity of the macromolecular derivatives of L5 should not be limited by the slow water exchange process. The relaxometric properties of the supramolecular adduct of GdL5 with human serum albumin (HSA) were investigated in aqueous solution by measuring the magnetic field dependence of the (1)H relaxivity which, at 20 MHz and 298 K, shows a 430% increase over that of the unbound GdL5 chelate. Thus, Gd(III) complexes with DOTAMAP macrocyclic ligands can represent good candidates for the development of stable and highly effective bioconjugate systems for molecular imaging applications.


Subject(s)
Amides/chemistry , Coordination Complexes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Lanthanoid Series Elements/chemistry , Kinetics , Thermodynamics
20.
Inorg Chem ; 53(23): 12499-511, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25387307

ABSTRACT

The heptadentate ligand OBETA (2,2'-oxybis(ethylamine)-N,N,N',N'-tetraacetic acid) was reported to form complexes with Ln(3+) ions more stable than those formed by the octadentate and more popular congener EGTA (ethylene glycol O,O'-bis(ethylamine)-N,N,N',N'-tetraacetic acid). The structural features leading to this puzzling coordination paradox were investigated by X-ray diffraction, solution state NMR, molecular modeling, and relaxometric studies. The stability constant of Gd(OBETA) (log KGdL = 19.37, 0.1 M KCl) is 2 orders of magnitude higher than that of the higher denticity analogue Gd(EGTA) (log KGdL = 17.66, 0.1 M KCl). The half-lives (t1/2) for the dissociation reactions of Gd(OBETA) and Gd(EGTA) ([Cu(2+)]tot = 0.2 mM, [Cit(3-)]tot = 0.5 mM, [PO4(3-)]tot = 1.0 mM, and [CO3(2-)]tot = 25 mM at pH = 7.4 and 25 °C in 0.1 M KCl solution) are 6.8 and 0.63 h, respectively, reflecting the much higher inertness of Gd(OBETA) near physiological conditions. NMR studies and DFT calculations using the B3LYP functional and a large-core ECP indicate that the [Gd(OBETA)(H2O)2](-) complex most likely exists in solution as the Δ(λλ)(δδδδ)A/Λ(δδ)(λλλλ)A enantiomeric pair, with an activation free energy for the enantiomerization process of ∼40 kJ·mol(-1). The metal ion is nine-coordinate by seven donor atoms of the ligand and two inner-sphere water molecules. The X-ray crystal structure of [C(NH2)3]3[Lu(OBETA)(CO3)]·2H2O is in agreement with the predictions of DFT calculations, the two coordinated water molecules being replaced by a bidentate carbonate anion. The (1)H NMRD and (17)O NMR study revealed that the two inner-sphere water molecules in Gd(OBETA) are endowed with a relatively fast water exchange rate (kex(298) = 13 × 10(6) s(-1)). The higher thermodynamic stability and inertness of Ln(OBETA) complexes, peaking in the center of the 4f series, combined with the presence of two coordinated water molecules suggests that Gd(OBETA) is a promising paramagnetic probe for MRI applications.


Subject(s)
Organometallic Compounds/chemistry , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...