Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 60(10): 1658-66, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20696438

ABSTRACT

After having estimated the patterns of flow to the ocean and found some seasonal and tidal differences, mainly with regard to the relative importance of dissolved and particulate fractions, mercury partitioning at the interface between a contaminated lagoon and the Atlantic Ocean was investigated during four tidal cycles in contrasting season and tidal regimes. Mercury was found to be located predominantely in the particulate fraction throughout the year, contributing to its retention within the system. Seasonal conditions, variations in marine and fluvial signals and processes affecting bed sediment resuspension influenced the character and concentration of suspended particulate matter in the water column. Variation in the nature, levels and partitioning of organic carbon in the particulate fraction affected levels of particulate mercury as well as mercury partitioning. These results highlight the dominant role of suspended particulate matter in the distribution of anthropogenic mercury and reinforce the importance of competitive behavior related to organic carbon in mercury scavenging.


Subject(s)
Mercury/chemistry , Seawater/chemistry , Water Pollutants, Chemical/chemistry , Atlantic Ocean , Environmental Monitoring , Particulate Matter
2.
Chemosphere ; 74(4): 530-6, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19004465

ABSTRACT

In the presence of metal stress, plants can resort to a series of tolerance mechanisms. Therefore field studies should be undertaken in order to evaluate the real role of these mechanisms in stress coping. The aim of this paper was to clarify the biochemical processes behind mercury tolerance in Halimione portulacoides (L.) Aellen (Caryophyllales: Chenopodiaceae) collected in a mercury contaminated salt marsh. Different fractions of mercury were separated: buffer-soluble (mainly cytosolic) and insoluble mercury (mainly associated with membranes and cell walls). The amounts in each fraction of metal were compared and related to metal distribution within plant organs. Protein-mercury complexes were isolated and analysed for their thiol content in order to assess wether the tolerance of this salt marsh plant was associated with the induction of metal chelation by phytochelatins. Overall, the mercury tolerance strategies of the plant are likely to involve root cell wall immobilization as a major mechanism of metal resistance, rather than metal chelation in the cytosolic fraction. Nevertheless, phytochelatins were demonstrated to chelate mercury under environmental exposure.


Subject(s)
Amaranthaceae/chemistry , Mercury/analysis , Wetlands , Amaranthaceae/metabolism , Environmental Exposure , Geologic Sediments/analysis , Intracellular Space/chemistry , Intracellular Space/metabolism , Phytochelatins/chemistry , Phytochelatins/isolation & purification , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Water Pollutants, Chemical/analysis
3.
Environ Monit Assess ; 155(1-4): 39-49, 2009 Aug.
Article in English | MEDLINE | ID: mdl-18592386

ABSTRACT

The Ria de Aveiro (Portugal) is a coast al lagoon adjacent to the Atlantic Ocean and it has an inner bay (Laranjo bay) that received a highly contaminated effluent discharged by a mercury cell chlor-alkali plant from the 1950s until 1994. The aim of this study is to review in a holistic way several research studies that have been carried out in the Ria de Aveiro, in order to evaluate the remobilization of the mercury accumulated within the system and the recovery of the lagoon. The spatial distribution of the total mercury in the surrounding terrestrial environment has also been considered. Results indicate that the main mercury contamination problems in the Ria de Aveiro are confined to the Laranjo bay. Mercury export to the coastal waters and its impact on the nearshore compartments (water column, sediment and biota) are low. No direct effects of the mercury from nearby industrial activities were detected in Aveiro's urban soils, although historical mercury contamination is still affecting soil quality in the immediate vicinity of the chlor-alkali plant, located in Estarreja. Moreover, macrophyte harvesting for human direct or indirect use and the consumption of mussels, crabs and the sea bass from the Laranjo bay may constitute a health risk. Further studies focusing on developing skills for the restoration of the ecosystem are presently underway.


Subject(s)
Environmental Monitoring , Mercury/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/analysis , Portugal , Soil Pollutants/analysis
4.
Chemosphere ; 73(8): 1224-9, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18799184

ABSTRACT

Mercury concentrations were quantified in Halimione portulacoides (roots, stems and leaves) as well as in sediments from eight Portuguese estuarine systems, covering seventeen salt marshes with distinct degrees of mercury contamination. The concentration of mercury in the sediments ranged from 0.03 to 17.0 microg g(-1). The results show that the accumulation of mercury differed according to the organ of the plant examined and the concentration of mercury in the sediments. Higher mercury concentrations were found in the roots (up to 12.9 microg g(-1)) followed by the leaves (up to 0.12 microg g(-1)), while the stems had the lowest concentrations (up to 0.056 microg g(-1)). A linear model explained the relation between the concentrations of mercury in the different plant organs: roots and stems (R(adj)(2)=0.75), stems and leaves (R(adj)(2)=0.85) and roots and leaves (R(adj)(2)=0.78). However, the results show that the variation of mercury concentration in the roots versus mercury concentration in the sediments was best fitted by a sigmoidal model (R(adj)(2)=0.89). Mercury accumulation in the roots can be described in three steps: at a low range of mercury concentrations in the sediments (from 0.03 up to 2 microg g(-1)), the accumulation of mercury in roots is also low reaching a maximum concentration of 1.3 microg g(-1); the highest rates of mercury accumulation in the roots occur in a second step, until the concentrations of mercury in the sediments reach approximately 4.5 microg g(-1); after reaching this maximum value, the rate of mercury accumulation in the roots slows down leading to a plateau in the concentration of mercury in the roots of about 9.4 microg g(-1), which corresponds to a mercury concentration in the sediments of about 11 microg g(-1). A linear model explained also the accumulation of mercury in leaves versus the mercury concentration in the sediments (R(adj)(2)=0.88). Differences in responses of roots and leaves are explained by the dynamics of the plant organs: old roots are mineralised in situ close to new roots, while leaves are renewed. Previous studies have already shown that H. portulacoides is a bioindicator for mercury and the results from this work sustain that H. portulacoides may also be used as a biomonitor for mercury contamination in salt marshes. Nevertheless, caution should be taken in the application of the models, concerning the life cycle of the species and the spatial variability of the systems.


Subject(s)
Amaranthaceae/chemistry , Environmental Monitoring/methods , Mercury/analysis , Wetlands , Water/chemistry
5.
Chemosphere ; 72(10): 1607-1613, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18555514

ABSTRACT

The present study intends to increase the knowledge on the mobility of mercury in a salt marsh colonised by Halimione portulacoides. Mercury distribution in the sediment layers and its incorporation into the plant biomass were assessed, as well as the potential export of mercury from the contaminated area to the adjacent environment. Mercury pools in the sediments ranged from 560 to 943 mg m(-2) and are largely associated with the solid fraction, with just a small amount being associated with the pore waters. Estimated diffusive fluxes of reactive mercury ranged from 1.3 to 103 ng m(-2) d(-1). Despite the above ground biomass values being comparatively higher than below ground biomass values, the mercury pools were much higher in the root system (0.06-0.16 mg m(-2) and 29-102 mg m(-2), respectively). The annual bioaccumulation of mercury in above ground tissues was estimated in 0.11 mg m(-2) y(-1), while in below ground biomass the values were higher (7 2mg m(-2) y(-1)). The turnover rates of H. portulacoides biomass suggest higher mercury mobility within the plant rhizosphere. Taking into account the pools of mercury in above ground biomass, the export of mercury by macro-detritus following the "outwelling hypothesis" is not significant for the mercury balance in the studied ecosystem. The mercury accumulated in the below ground part of the plant is quite mobile, being able to return to the sediment pool throughout the mineralisation process.


Subject(s)
Amaranthaceae/metabolism , Geologic Sediments/analysis , Mercury/analysis , Wetlands , Amaranthaceae/growth & development , Biodegradation, Environmental , Biomass , Environmental Monitoring , Geography , Mercury/metabolism , Portugal
6.
Mar Pollut Bull ; 56(5): 845-59, 2008 May.
Article in English | MEDLINE | ID: mdl-18355877

ABSTRACT

This study was carried out in the Laranjo basin (Ria de Aveiro, Portugal), an area impacted by mercury discharges. Liza aurata oxidative stress and biotransformation responses were assessed in the liver and related to total mercury (Hgt) concentrations. A seasonal fish survey revealed a sporadic increase in total glutathione (GSHt) and elevated muscle Hgt levels, although Hg levels did not exceed the EU regulatory limit. As a complement study, fish were caged for three days both close to the bottom and on the water surface at three locations, and displayed higher Hgt levels accompanied by increased GSHt content and catalase activity as well as EROD activity inhibition. The bottom group displayed higher hepatic Hgt and GSHt contents compared with the surface group. Globally, both wild and caged fish revealed that the liver accumulates higher Hgt concentrations than muscle and, thus, better reflects environmental contamination levels. The absence of peroxidative damage in the liver can be attributed to effective detoxification and antioxidant defense.


Subject(s)
Antioxidants/metabolism , Mercury/pharmacokinetics , Smegmamorpha/metabolism , Water Pollutants, Chemical/pharmacokinetics , Animals , Biotransformation , Catalase/metabolism , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Environmental Monitoring , Food Contamination/analysis , Geologic Sediments/analysis , Glutathione/metabolism , Glutathione Transferase/metabolism , Humans , Lipid Peroxidation , Liver/drug effects , Liver/metabolism , Mercury/analysis , Mercury/toxicity , Muscles/metabolism , Public Health , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Ecotoxicol Environ Saf ; 70(3): 411-21, 2008 Jul.
Article in English | MEDLINE | ID: mdl-17920119

ABSTRACT

Laranjo basin (Aveiro, Portugal) has been subjected to mercury contamination from a chlor-alkali plant, presenting a well-described mercury gradient. This study aims the assessment of mercury genotoxicity in this area by measuring erythrocytic nuclear abnormalities (ENA) frequency in the mullet Liza aurata, and its relation with total mercury concentration (Hg(t)) in blood. Wild fish were seasonally analysed, and, complementarily, fish were caged for 3 days at three locations differing on their distances to the mercury source. The results from Laranjo were compared with those from a reference area (S. Jacinto). Wild fish from Laranjo showed elevated ENA frequency in summer and autumn in concomitance with increased blood Hg(t). Surprisingly, no ENA induction was found in winter, despite the highest blood Hg(t), which may be explained by haematological dynamics alterations, as supported by a decreased immature erythrocytes frequency. Caged fish displayed ENA induction only at the closest site to the contamination source, also showing a correlation with blood Hg(t).


Subject(s)
Erythrocytes/drug effects , Mercury/toxicity , Mutagens/toxicity , Smegmamorpha/blood , Water Pollutants, Chemical/toxicity , Animals , Cell Nucleus/drug effects , Cell Nucleus/pathology , Environmental Monitoring , Erythrocytes/pathology , Geologic Sediments/analysis , Mercury/analysis , Mercury/blood , Mutagenicity Tests , Mutagens/analysis , Portugal , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood
8.
Chemosphere ; 71(4): 765-72, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18061237

ABSTRACT

During four decades, the Ria de Aveiro was subjected to the loading of mercury from a chlor-alkali industry, resulting in the deposition of several tons of mercury in the sediments. The present study evaluates the impact of this disturbance and the recovery processes, temporally and spatially, by means of examining the richness of the species of salt marsh plants and mercury concentrations in sediments over the last fifty years. The temporal assessment showed that the mercury loading induced a shift in the species composition of the salt marsh from a non-disturbed salt marsh with higher species richness to an alternative state dominated by Phragmites australis. The horizontal assessment, through a mercury gradient, presents the same trend, indicating that P. australis is the species most tolerant to higher mercury concentrations, comparative to Halimione portulacoides, Arthrocnemum fruticosum, Triglochin maritima, Juncus maritimus and Scirpus maritimus. After the reduction of mercury discharges in 1994, the salt marsh shows a slowly return path recovery response. The hysteresis in the response results in the temporal gap between the reduction in mercury concentrations in the sediment and the salt marsh species richness response, comparatively to the existing diversity in the local reference marsh.


Subject(s)
Environmental Pollution/adverse effects , Environmental Pollution/analysis , Mercury/pharmacology , Plants/drug effects , Salts , Wetlands , Biodiversity , Time Factors
10.
Chemosphere ; 67(2): 211-20, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17140624

ABSTRACT

The influence of the colonization of salt marsh sediments with Halimione portulacoides was evaluated by analysing the fluorescent dissolved organic matter (FDOM) in sediment pore waters from a salt marsh at different depths. Cores of sediments at colonized and non-colonized sites were collected from a coastal lagoon (Ria de Aveiro, Portugal). The DOC content of extracted pore waters was determined and characterized by synchronous molecular fluorescence (Deltalambda=60nm) and UV-visible spectroscopies. The common practice of freezing sediment cores for further and later chemical investigation was shown not to be an appropriate methodology of sample preservation. On the contrary, freezing of extracted and filtered pore water seemed not to affect either the DOC content or the fluorescence properties of pore waters. Two types of fluorescent substances were found in the pore waters spectra; one corresponding to humic-like substances and another one resembling proteins. However, major differences were found in the spectra of pore waters depending on both depth and the presence/absence of vegetation colonization.


Subject(s)
Carbon/analysis , Geologic Sediments/analysis , Seawater/analysis , Chenopodiaceae/growth & development , Environmental Microbiology , Organic Chemicals/analysis , Spectrometry, Fluorescence
12.
Mar Pollut Bull ; 50(11): 1218-22, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15893331

ABSTRACT

Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.


Subject(s)
Environmental Monitoring/statistics & numerical data , Geologic Sediments/analysis , Mercury/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Carbon/analysis , Portugal , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...