Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(11): 7150-7166, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35549349

ABSTRACT

A series of aza[n]helicenes (n = 4-7) was synthesized using a photocyclodehydrochlorination of 1-chloro-N-aryl-2-naphthamides as a general synthetic procedure introducing the nitrogen atom to the third ring of the helicene framework. The effect of the nitrogen presence in the helicene skeleton on the physicochemical properties of the prepared aza[n]helicenes was studied and compared to those of the parent carbo-analogues. The insertion of a nitrogen atom into the outer edge of the helicene molecule has a severe impact on certain physicochemical properties such as optical rotation, electrostatic potentials, and intermolecular interactions. On the other hand, some other properties such as UV/vis, fluorescence, and phosphorescence spectra remained almost unaffected when compared to the parent carbohelicenes. A nitrogen atom can be also used for further derivatization, which can lead to further modification of helicene properties, as manifested here in the fluorescence changes induced by protonation.

2.
J Org Chem ; 86(19): 13252-13264, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34533022

ABSTRACT

A novel methodology for the synthesis of aza[n]phenacenes was successfully developed utilizing photocyclodehydrochlorination reaction of 2-chloro-N-aryl-1-naphthamides. In these key intermediates, the factors influencing the photoreaction were studied. The target aza[n]phenacenes were obtained by triflation or chlorination from prepared phenanthridinones, followed by hydrogenation. The introduction of a nitrogen atom into a phenacene skeleton induced changes in the physicochemical properties. The important properties of prepared aza[n]phenacenes (n = 4-6) were studied experimentally and by density functional theory calculations and were compared to those of their carbo analogues. Furthermore, some important features of the crystalline aza[n]phenacenes were investigated, including intermolecular interaction in the crystal lattice and the increased solubility or decreased melting points.

3.
Xenobiotica ; 47(6): 505-514, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27401914

ABSTRACT

1. 5,6-Methylenedioxy-2-aminoindane (MDAI) is a member of aminoindane drug family with serotoninergic effect, which appeared on illicit drug market as a substitute for banned stimulating and entactogenic drugs. 2. Metabolism of MDAI, which has been hitherto unexplored, was studied in rats dosed with a subcutaneous dose of 20 mg MDAI.HCl/kg body weight. The urine of rats was collected within 24 h after dosing for analyses by HPLC-ESI-HRMS and GC/MS. 3. The main metabolic pathways proceeding in parallel were found to be oxidative demethylenation followed by O-methylation and N-acetylation. These pathways gave rise to five metabolites, namely, 5,6-dihydroxy-2-aminoindane, 5-hydroxy-6-methoxy-2-aminoindane, N-acetyl-5,6-methylenedioxy-2-aminoindane, N-acetyl-5,6-dihydroxy-2-aminoindane and N-acetyl-5-hydroxy-6-methoxy-2-aminoindane, which were found predominantly in the form of corresponding glucuronides and sulphates. However, the main portion of administered MDAI was excreted unchanged. 4. Minor metabolites formed primarily by hydroxylation at various sites include cis- and trans-1-hydroxy-5,6-methylenedioxy-2-aminoindane, 5,6-methylenedioxyindan-2-ol and 4-hydroxy-5,6-methylenedioxy-2-aminoindane. 5. Identification of all metabolites except for glucuronides, sulphates and tentatively identified 4-hydroxy-5,6-methylenedioxy-2-aminoindane was supported by synthesised reference standards.


Subject(s)
Illicit Drugs/urine , Indans/urine , Substance Abuse Detection/methods , Animals , Rats
4.
Chem Res Toxicol ; 28(6): 1317-25, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25992791

ABSTRACT

Phenylnitrenium ion (PhNH(+)) may bind to nucleophiles through nitrogen as well as through C2 or C4 carbons. However, only adducts of the former type have been hitherto reported after its reaction with purine nucleosides. In this study, reactions of N-acetoxyaniline (PhNHOAc), a precursor to PhNH(+), with 2'-deoxyadenosine (dA), 2'-deoxyguanosine (dG), and with DNA in vitro at physiological conditions are described. The reaction of PhNHOAc with dA followed by a hydrolytic deribosylation afforded 8-phenylaminoadenine (C8-PhNHA) together with a smaller amount of N(6)-(4-aminophenyl)adenine (N(6)-4APA). A similar reaction with dG afforded 8-phenylaminoguanine (C8-PhNHG) together with traces of 7-(4-aminophenyl)guanine (N7-4APG). The same adducts were found also in the DNA treated with PhNHOAc, and all of them were identified by comparison of their HPLC retention times and MS(2) spectra with a set of synthesized authentic adenine adducts at C2, C8, N7, and N(6) positions and guanine adducts at C8, N7, and N(2) positions. The newly identified minor adduct, N7-4APG, represents the first proof of arylnitrenium adduction at the N7 position of dG, which is the prominent site of attack by most C-electrophiles.


Subject(s)
Benzene Derivatives/chemistry , DNA Adducts/analysis , Imides/chemistry , Chromatography, High Pressure Liquid , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...