Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 199(6): 776-788, 2022 06.
Article in English | MEDLINE | ID: mdl-35580222

ABSTRACT

AbstractThe emergence of animal societies offers unsolved problems for both evolutionary and ecological studies. Social spiders are especially well suited to address this problem given their multiple independent origins and distinct geographic distribution. On the basis of long-term research on the spider genus Anelosimus, we developed a spatial model that re-creates observed macroecological patterns in the distribution of social and subsocial spiders. We show that parallel gradients of increasing insect size and disturbance (rain, predation) with proximity to the lowland tropical rain forest would explain why social species are concentrated in the lowland wet tropics but absent from higher elevations and latitudes. The model further shows that disturbance, which disproportionately affects small colonies, not only creates conditions that require group living but also tempers the dynamics of large social groups. Similarly simple underlying processes, albeit with different players on a somewhat different stage, may explain the diversity of other social systems.


Subject(s)
Spiders , Animals , Ecology , Insecta , Predatory Behavior , Social Behavior
2.
PeerJ ; 3: e977, 2015.
Article in English | MEDLINE | ID: mdl-26038732

ABSTRACT

The spectacular diversity of personality and behaviour of animals and humans has evoked many hypotheses intended to explain its developmental and evolutionary background. Although the list of the possible contributing mechanisms seems long, we propose that an underemphasised explanation is the division of labour creating negative frequency dependent selection. We use analytical and numerical models of social division of labour to show how selection can create consistent and heritable behavioural differences in a population, where randomly sampled individuals solve a collective task together. We assume that the collective task needs collaboration of individuals performing one of the two possible subtasks. The total benefit of the group is highest when the ratio of different subtasks is closest to 1. The probability of choosing one of the two costly subtasks and the costs assigned to them are under selection. By using adaptive dynamics we show that if a trade-off between the costs of the subtasks is strong enough, then evolution leads to coexistence of specialized individuals performing one of the subtasks with high probability and low cost. Our analytical results were verified and extended by numerical simulations.

3.
Biosystems ; 113(2): 81-90, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23727301

ABSTRACT

A generalized version of the N-person volunteer's dilemma (NVD) Game has been suggested recently for illustrating the problem of N-person social dilemmas. Using standard replicator dynamics it can be shown that coexistence of cooperators and defectors is typical in this model. However, the question of how a rare mutant cooperator could invade a population of defectors is still open. Here we examined the dynamics of individual based stochastic models of the NVD. We analyze the dynamics in well-mixed and viscous populations. We show in both cases that coexistence between cooperators and defectors is possible; moreover, spatial aggregation of types in viscous populations can easily lead to pure cooperation. Furthermore we analyze the invasion of cooperators in populations consisting predominantly of defectors. In accordance with analytical results, in deterministic systems, we found the invasion of cooperators successful in the well-mixed case only if their initial concentration was higher than a critical threshold, defined by the replicator dynamics of the NVD. In the viscous case, however, not the initial concentration but the initial number determines the success of invasion. We show that even a single mutant cooperator can invade with a high probability, because the local density of aggregated cooperators exceeds the threshold defined by the game. Comparing the results to models using different benefit functions (linear or sigmoid), we show that the role of the benefit function is much more important in the well-mixed than in the viscous case.


Subject(s)
Cooperative Behavior , Game Theory , Interpersonal Relations , Models, Psychological , Computer Simulation , Humans , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...