Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
bioRxiv ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38915522

ABSTRACT

Neuronal regulation of cerebrovasculature underlies brain imaging techniques reliant on cerebral blood flow (CBF) changes. However, interpreting these signals requires understanding their neural correlates. Parvalbumin (PV) interneurons are crucial in network activity, but their impact on CBF is not fully understood. Optogenetic studies show that stimulating cortical PV interneurons induces diverse CBF responses, including rapid increases, decreases, and slower delayed increases. To clarify this relationship, we measured hemodynamic and neural responses to optogenetic stimulation of PV interneurons expressing Channelrhodopsin-2 during evoked and ongoing resting-state activity in the somatosensory cortex of awake mice. Two-photon microscopy (2P) Ca2+ imaging showed robust activation of PV-positive (PV+) cells and inhibition of PV-negative (PV-) cells. Prolonged PV+ cell stimulation led to a delayed, slow CBF increase, resembling a secondary peak in the CBF response to whisker stimulation. 2P vessel diameter measurements revealed that PV+ cell stimulation induced rapid arterial vasodilation in superficial layers and delayed vasodilation in deeper layers. Ongoing activity recordings indicated that both PV+ and PV- cell populations modulate arterial fluctuations at rest, with PV+ cells having a greater impact. These findings show that PV interneurons generate a complex depth-dependent vascular response, dominated by slow vascular changes in deeper layers.

2.
Adv Healthc Mater ; : e2302362, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563704

ABSTRACT

Cerebral neural electronics play a crucial role in neuroscience research with increasing translational applications such as brain-computer interfaces for sensory input and motor output restoration. While widely utilized for decades, the understanding of the cellular mechanisms underlying this technology remains limited. Although two-photon microscopy (TPM) has shown great promise in imaging superficial neural electrodes, its application to deep-penetrating electrodes is technically difficult. Here, a novel device integrating transparent microelectrode arrays with glass microprisms, enabling electrophysiology recording and stimulation alongside TPM imaging across all cortical layers in a vertical plane, is introduced. Tested in Thy1-GCaMP6 mice for over 4 months, the integrated device demonstrates the capability for multisite electrophysiological recording/stimulation and simultaneous TPM calcium imaging. As a proof of concept, the impact of microstimulation amplitude, frequency, and depth on neural activation patterns is investigated using the setup. With future improvements in material stability and single unit yield, this multimodal tool greatly expands integrated electrophysiology and optical imaging from the superficial brain to the entire cortical column, opening new avenues for neuroscience research and neurotechnology development.

3.
Cell Rep ; 43(4): 113970, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38512868

ABSTRACT

To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.


Subject(s)
Neurovascular Coupling , Animals , Mice , Neurovascular Coupling/physiology , Humans , Neurons/metabolism , Neurons/physiology , Vibrissae/physiology , Mice, Inbred C57BL , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Male , Cerebral Cortex/physiology , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Nitric Oxide Synthase Type I/metabolism
4.
J Neural Eng ; 21(2)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38537268

ABSTRACT

Objective. Intracortical microstimulation (ICMS) can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site.Approach. Different microstimulation frequencies were investigatedin vivoon Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging.Main results. Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies.Significance. These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by ICMS and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.


Subject(s)
Calcium , Visual Cortex , Mice , Animals , Photic Stimulation , Oxyhemoglobins , Neurons/physiology , Electric Stimulation/methods
5.
iScience ; 27(4): 109371, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38510113

ABSTRACT

Cerebral microbleeds (CMBs) are associated with higher risk for various neurological diseases including stroke, dementia, and Alzheimer's disease. However, the understanding of cellular pathology of CMBs, particularly in deep brain regions, remains limited. Utilizing two-photon microscopy and microprism implantation, we longitudinally imaged the impact of CMBs on neuronal and microglial activities across cortical depths in awake mice. A temporary decline in spontaneous neuronal activity occurred throughout cortical layers, followed by recovery within a week. However, significant changes of neuron-neuron activity correlations persisted for weeks. Moreover, microglial contact with neuron soma significantly increased post-microbleeds, indicating an important modulatory role of microglia. Notably, microglial contact, negatively correlated with neuronal firing rate in normal conditions, became uncorrelated after microbleeds, suggesting a decreased neuron-microglia inhibition. These findings reveal chronic alterations in cortical neuronal networks and microglial-neuronal interactions across cortical depths, shedding light on the pathology of CMBs.

6.
bioRxiv ; 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38260671

ABSTRACT

Objective . Intracortical microstimulation can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site. Approach . Different microstimulation frequencies were investigated in vivo on Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging. Main results . Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies. Significance . These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by intracortical microstimulation and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.

7.
Adv Healthc Mater ; 13(3): e2301221, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37916912

ABSTRACT

Vascular damage and reduced tissue perfusion are expected to majorly contribute to the loss of neurons or neural signals around implanted electrodes. However, there are limited methods of controlling the vascular dynamics in tissues surrounding these implants. This work utilizes conducting polymer poly(ethylenedioxythiophene) and sulfonated silica nanoparticle composite (PEDOT/SNP) to load and release a vasodilator, sodium nitroprusside, to controllably dilate the vasculature around carbon fiber electrodes (CFEs) implanted in the mouse cortex. The vasodilator release is triggered via electrical stimulation and the amount of release increases with increasing electrical pulses. The vascular dynamics are monitored in real-time using two-photon microscopy, with changes in vessel diameters quantified before, during, and after the release of the vasodilator into the tissues. This work observes significant increases in vessel diameters when the vasodilator is electrically triggered to release, and differential effects of the drug release on vessels of different sizes. In conclusion, the use of nanoparticle reservoirs in conducting polymer-based drug delivery platforms enables the controlled delivery of vasodilator into the implant environment, effectively altering the local vascular dynamics on demand. With further optimization, this technology could be a powerful tool to improve the neural electrode-tissue interface and study neurovascular coupling.


Subject(s)
Nanoparticles , Vasodilator Agents , Mice , Animals , Silicon Dioxide , Polymers/pharmacology , Electrodes, Implanted , Brain/physiology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology
9.
J Clin Med ; 12(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37834837

ABSTRACT

Inflammatory Bowel Disease (IBD) presents distinct challenges during pregnancy due to its influence on maternal health and pregnancy outcomes. This literature review aims to dissect the existing scientific evidence on pregnancy in women with IBD and provide evidence-based recommendations for clinical management. A comprehensive search was conducted across scientific databases, selecting clinical studies, systematic reviews, and other pertinent resources. Numerous studies have underscored an increased risk of complications during pregnancy for women with IBD, including preterm birth, low birth weight, neonates small for gestational age, and congenital malformations. Nevertheless, it's evident that proactive disease management before and throughout pregnancy can mitigate these risks. Continuation of IBD treatment during pregnancy and breastfeeding is deemed safe with agents like thiopurines, anti-TNF, vedolizumab, or ustekinumab. However, there's a call for caution when combining treatments due to the heightened risk of severe infections in the first year of life. For small molecules, their use is advised against in both scenarios. Effective disease management, minimizing disease activity, and interdisciplinary care are pivotal in attending to women with IBD. The emphasis is placed on the continual assessment of maternal and infant outcomes and an expressed need for further research to enhance the understanding of the ties between IBD and adverse pregnancy outcomes.

10.
Genes (Basel) ; 14(10)2023 10 07.
Article in English | MEDLINE | ID: mdl-37895262

ABSTRACT

Parkinson's disease (PD) pathophysiology includes mitochondrial dysfunction, neuroinflammation, and aging as its biggest risk factors. Mitochondrial DNA copy number (mtDNA-CN) and telomere length (TL) are biological aging markers with inconclusive results regarding their association with PD. A case-control study was used to measure TL and mtDNA-CN using qPCR in PBMCs. PD patients were naive at baseline (T0) and followed-up at one (T1) and two (T2) years after the dopaminergic treatment (DRT). Plasmatic cytokines were determined by ELISA in all participants, along with clinical parameters of patients at T0. While TL was shorter in patients vs. controls at all time points evaluated (p < 0.01), mtDNA-CN showed no differences. An increase in mtDNA-CN and TL was observed in treated patients vs. naive ones (p < 0.001). Our statistical model analyzed both aging markers with covariates, showing a strong correlation between them (r = 0.57, p < 0.01), and IL-17A levels positively correlating with mtDNA-CN only in untreated patients (r = 0.45, p < 0.05). TL and mtDNA-CN could be useful markers for monitoring inflammation progression or treatment response in PD. DRT might modulate TL and mtDNA-CN, reflecting a compensatory mechanism to counteract mitochondrial dysfunction in PD, but this needs further investigation.


Subject(s)
DNA, Mitochondrial , Parkinson Disease , Humans , DNA, Mitochondrial/genetics , Case-Control Studies , DNA Copy Number Variations/genetics , Parkinson Disease/genetics , Telomere/genetics , Mitochondria/genetics , Biomarkers
12.
Neuroimage ; 274: 120121, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37080347

ABSTRACT

Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.


Subject(s)
Odorants , Olfactory Bulb , Rats , Mice , Animals , Olfactory Bulb/physiology , Magnetic Resonance Imaging/methods , Wakefulness/physiology , Smell/physiology , Rodentia
13.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 45(2): 117-126, Mar.-Apr. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439560

ABSTRACT

Objective: The clinical trajectories of patients with psychotic disorders have divergent outcomes, which may result in part from glutathione (GSH)-related high-risk genotypes. We aimed to determine pharmacokinetics of clozapine, GSH levels, GSH peroxidase (GPx) activity, gene variants involved in the synthesis and metabolism of GSH, and their association with psychotic disorders in Mexican patients on clozapine monotherapy and controls. Methods: The sample included 75 patients with psychotic disorders on clozapine therapy and 40 paired healthy controls. Plasma clozapine/N-desmethylclozapine, GSH concentrations, and GPx activity were determined, along with genotyping of GCLC and GSTP1 variants and copy number variations of GSTP1, GSTT1, and GSTM1. Clinical, molecular and biochemical data were analyzed with a logistic regression model. Results: GSH levels were significantly reduced and, conversely, GPx activity was higher among patients than controls. GCLC_GAG-7/9 genotype (OR = 4.3, 95%CI = 1.40-14.31, p = 0.019) and hetero-/homozygous genotypes of GCLC_rs761142 (OR = 6.09, 95%CI = 1.93-22.59, p = 0.003) were found to be risk factors for psychosis. The genetic variants were not related to clozapine/N-desmethylclozapine levels or metabolic ratio. Conclusions: GCLC variants were associated with the oxidative stress profile of patients with psychotic disorders, raising opportunities for intervention to improve their antioxidant defenses. Further studies with larger samples should explore this proposal.

14.
Article in English | MEDLINE | ID: mdl-36901420

ABSTRACT

Alzheimer's disease (AD) is characterized by the presence of neuropsychiatric or behavioral and psychological symptoms of dementia (BPSD). BPSD have been associated with the APOE_ε4 allele, which is also the major genetic AD risk factor. Although the involvement of some circadian genes and orexin receptors in sleep and behavioral disorders has been studied in some psychiatric pathologies, including AD, there are no studies considering gene-gene interactions. The associations of one variant in PER2, two in PER3, two in OX2R and two in APOE were evaluated in 31 AD patients and 31 cognitively healthy subjects. Genotyping was performed using real-time PCR and capillary electrophoresis from blood samples. The allelic-genotypic frequencies of variants were calculated for the sample study. We explored associations between allelic variants with BPSD in AD patients based on the NPI, PHQ-9 and sleeping disorders questionnaires. Our results showed that the APOE_ε4 allele is an AD risk variant (p = 0.03). The remaining genetic variants did not reveal significant differences between patients and controls. The PER3_rs228697 variant showed a nine-fold increased risk for circadian rhythm sleep-wake disorders in Mexican AD patients, and our gene-gene interaction analysis identified a novel interaction between PERIOD and APOE gene variants. These findings need to be further confirmed in larger samples.


Subject(s)
Alzheimer Disease , Humans , Alleles , Alzheimer Disease/diagnosis , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Gene Frequency , Genotype , Period Circadian Proteins/genetics
15.
Braz J Psychiatry ; 45(2): 117-126, 2023 May 11.
Article in English | MEDLINE | ID: mdl-36318479

ABSTRACT

OBJECTIVE: The clinical trajectories of patients with psychotic disorders have divergent outcomes, which may result in part from glutathione (GSH)-related high-risk genotypes. We aimed to determine pharmacokinetics of clozapine, GSH levels, GSH peroxidase (GPx) activity, gene variants involved in the synthesis and metabolism of GSH, and their association with psychotic disorders in Mexican patients on clozapine monotherapy and controls. METHODS: The sample included 75 patients with psychotic disorders on clozapine therapy and 40 paired healthy controls. Plasma clozapine/N-desmethylclozapine, GSH concentrations, and GPx activity were determined, along with genotyping of GCLC and GSTP1 variants and copy number variations of GSTP1, GSTT1, and GSTM1. Clinical, molecular and biochemical data were analyzed with a logistic regression model. RESULTS: GSH levels were significantly reduced and, conversely, GPx activity was higher in PD patients compared to controls. GCLC_GAG-7/9 genotype (OR=4.3, CI95=1.40-14.31, p=0.019) and hetero-/homozygous genotypes of GCLC_rs761142 (OR=6.09, CI95=1.93-22.59, p=0.003) were found as risk factors for psychosis. The genetic variants were not related to clozapine/N-desmethylclozapine levels or to metabolic ratio. CONCLUSIONS: GCLC variants were associated with the oxidative stress profile of PD patients raising opportunities for intervention to improve their antioxidant defenses. Further studies with larger samples should explore this proposal.


Subject(s)
Clozapine , Psychotic Disorders , Humans , Polymorphism, Genetic , Clozapine/therapeutic use , DNA Copy Number Variations , Genotype , Oxidative Stress/genetics , Glutathione/genetics , Glutathione/metabolism , Antioxidants , Psychotic Disorders/drug therapy , Psychotic Disorders/genetics , Genetic Predisposition to Disease , Case-Control Studies
16.
J Cereb Blood Flow Metab ; 42(12): 2255-2269, 2022 12.
Article in English | MEDLINE | ID: mdl-35854408

ABSTRACT

Epinephrine is the principal resuscitation therapy for pediatric cardiac arrest (CA). Clinical data suggest that although epinephrine increases the rate of resuscitation, it fails to improve neurological outcome, possibly secondary to reductions in microvascular flow. We characterized the effect of epinephrine vs. placebo administered at resuscitation from pediatric asphyxial CA on microvascular and macrovascular cortical perfusion assessed using in vivo multiphoton microscopy and laser speckle flowmetry, respectively, and on brain tissue oxygenation (PbO2), behavioral outcomes, and neuropathology in 16-18-day-old rats. Epinephrine-treated rats had a more rapid return of spontaneous circulation and brisk immediate cortical reperfusion during 1-3 min post-CA vs. placebo. However, at the microvascular level, epinephrine-treated rats had penetrating arteriole constriction and increases in both capillary stalling (no-reflow) and cortical capillary transit time 30-60 min post-CA vs. placebo. Placebo-treated rats had increased capillary diameters post-CA. The cortex was hypoxic post-CA in both groups. Epinephrine treatment worsened reference memory performance vs. shams. Hippocampal neuron counts did not differ between groups. Resuscitation with epinephrine enhanced immediate reperfusion but produced microvascular alterations during the first hour post-resuscitation, characterized by vasoconstriction, capillary stasis, prolonged cortical transit time, and absence of compensatory cortical vasodilation. Targeted therapies mitigating the deleterious microvascular effects of epinephrine are needed.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Animals , Rats , Microscopy , Cerebrovascular Circulation/physiology , Heart Arrest/drug therapy , Heart Arrest/complications , Epinephrine/pharmacology , Epinephrine/therapeutic use , Resuscitation
17.
Front Psychiatry ; 13: 870656, 2022.
Article in English | MEDLINE | ID: mdl-35664466

ABSTRACT

Long-term studies have shown significantly lower mortality rates in patients with continuous clozapine (CLZ) treatment than other antipsychotics. We aimed to evaluate epigenetic age and DNA methylome differences between CLZ-treated patients and those without psychopharmacological treatment. The DNA methylome was analyzed using the Infinium MethylationEPIC BeadChip in 31 CLZ-treated patients with psychotic disorders and 56 patients with psychiatric disorders naive to psychopharmacological treatment. Delta age (Δage) was calculated as the difference between predicted epigenetic age and chronological age. CLZ-treated patients were stratified by sex, age, and years of treatment. Differential methylation sites between both groups were determined using linear regression models. The Δage in CLZ-treated patients was on average lower compared with drug-naive patients for the three clocks analyzed; however, after data-stratification, this difference remained only in male patients. Additional differences were observed in Hannum and Horvath clocks when comparing chronological age and years of CLZ treatment. We identified 44,716 differentially methylated sites, of which 87.7% were hypomethylated in CLZ-treated patients, and enriched in the longevity pathway genes. Moreover, by protein-protein interaction, AMPK and insulin signaling pathways were found enriched. CLZ could promote a lower Δage in individuals with long-term treatment and modify the DNA methylome of the longevity-regulating pathways genes.

18.
Medicina (Kaunas) ; 58(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35743989

ABSTRACT

Background and Objectives: Acute respiratory distress syndrome is a life-threatening lung condition that prevents enough oxygen from getting to the lungs and blood. The causes can be varied, although since the COVID-19 pandemic began there have been many cases related to this virus. The management and evolution of ARDS in emergency situations in the last 5 years was analyzed. Materials and Methods: A systematic review was carried out in the PubMed and Scopus databases. Using the descriptors Medical Subject Headings (MeSH), the search equation was: "Emergency health service AND acute respiratory distress syndrome". The search was conducted in December 2021. Quantitative primary studies on the care of patients with ARDS in an emergency setting published in the last 5 years were included. Results: In the initial management, adherence to standard treatment with continuous positive airway pressure (CPAP) is recommended. The use of extracorporeal membrane reduces the intensity of mechanical ventilation or as rescue therapy in acute respiratory distress syndrome (ARDS). The prone position in both intubated and non-intubated patients with severe ARDS is associated with a better survival of these patients, therefore, it is very useful in these moments of pandemic crisis. Lack of resources forces triage decisions about which patients are most likely to survive to start mechanical ventilation and this reflects the realities of intensive care and emergency care in a resource-limited setting. Conclusions: adequate prehospital management of ARDS and in emergency situations can improve the prognosis of patients. The therapeutic options in atypical ARDS due to COVID-19 do not seem to vary substantially from conventional ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Critical Care , Humans , Pandemics , Respiration, Artificial , Respiratory Distress Syndrome/therapy
19.
iScience ; 25(7): 104539, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35769881

ABSTRACT

Chronic microstimulation is faced with challenges that require an additional understanding of stability and safety. We implanted silicon arrays coated with poly(3,4-ethylenedioxythiophene) (PEDOT)/Carbon Nanotubes (CNT), or PCand IrOx into the cortex of GCaMP6s mice and electrically stimulated them for up to 12 weeks. We quantified neuronal responses to stimulation using two-photon imaging and mesoscale fluorescence microscopy and characterized electrode performance over time. We observed dynamic changes in stimulation stability over time and a significant advantage in energy efficiency using PC coated electrodes over IrOx coated electrodes. In a subset of mice, we observed abnormal ictal cortical responses or cortical spreading depression using stimulation parameters commonly used in intracortical stimulation applications, suggesting the need to investigate the potential neuronal damage and redefine the stimulation safety limit. This study not only revealed the dynamic changes in stimulation efficiency after implantation but also reiterates the potential for PC as a high-efficiency material in chronic neuromodulation.

20.
Pharmacogenomics ; 23(6): 371-392, 2022 04.
Article in English | MEDLINE | ID: mdl-35311547

ABSTRACT

Clozapine (CLZ) is an atypical antipsychotic reserved for patients with refractory psychosis, but it is associated with a significant risk of severe adverse reactions (ADRs) that are potentiated with the concomitant use of alcohol. Additionally, pharmacogenetic studies have explored the influence of several genetic variants in CYP450, receptors and transporters involved in the interindividual response to CLZ. Herein, we systematically review the current multiomics knowledge behind the interaction between CLZ and alcohol intake, and how its concomitant use might modulate the pharmacogenetics. CYP1A2*1F, *1C and other alleles not yet discovered could support a precision medicine approach for better therapeutic effects and fewer CLZ ADRs. CLZ monitoring systems should be amended and include alcohol intake to protect patients from severe CLZ ADRs.


Subject(s)
Antipsychotic Agents , Clozapine , Drug-Related Side Effects and Adverse Reactions , Schizophrenia , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Antipsychotic Agents/adverse effects , Clozapine/adverse effects , Humans , Pharmacogenetics , Schizophrenia/drug therapy , Schizophrenia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...