Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499506

ABSTRACT

During Inflammaging, a dysregulation of the immune cell functions is generated, and these cells acquire a senescent phenotype with an increase in pro-inflammatory cytokines and ROS. This increase in pro-inflammatory molecules contributes to the chronic inflammation and oxidative damage of biomolecules, classically observed in the Inflammaging process. One of the most critical oxidative damages is generated to the host DNA. Damaged DNA is located out of the natural compartments, such as the nucleus and mitochondria, and is present in the cell's cytoplasm. This DNA localization activates some DNA sensors, such as the cGAS/STING signaling pathway, that induce transcriptional factors involved in increasing inflammatory molecules. Some of the targets of this signaling pathway are the SASPs. SASPs are secreted pro-inflammatory molecules characteristic of the senescent cells and inducers of ROS production. It has been suggested that oxidative damage to nuclear and mitochondrial DNA generates activation of the cGAS/STING pathway, increasing ROS levels induced by SASPs. These additional ROS increase oxidative DNA damage, causing a loop during the Inflammaging. However, the relationship between the cGAS/STING pathway and the increase in ROS during Inflammaging has not been clarified. This review attempt to describe the potential connection between the cGAS/STING pathway and ROS during the Inflammaging process, based on the current literature, as a contribution to the knowledge of the molecular mechanisms that occur and contribute to the development of the considered adaptative Inflammaging process during aging.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Humans , Reactive Oxygen Species , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction/physiology , Inflammation , DNA, Mitochondrial/genetics
2.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1076-1087, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30904612

ABSTRACT

Lysosomes are dynamic organelles, which can fuse with a variety of targets and undergo constant regeneration. They can move along microtubules in a retrograde and anterograde fashion by using motor proteins, kinesin and dynein, being main players in extracellular secretion, intracellular components degradation and recycling. Moreover, lysosomes interact with other intracellular organelles to regulate their turnover, such as ER, mitochondria and peroxisomes. The correct localization of lysosomes is relevant in several physiological processes, including appropriate antigen presentation, neurotransmission and receptors modulation in neuronal synapsis, whereas hepatic lysosomes and autophagy are master regulators of nutrient homeostasis. Alterations in lysosome function due to mutation of genes encoding lysosomal proteins, soluble hydrolases as well as membrane proteins, lead to lysosomal storage diseases (LSDs). Lysosomes containing undegraded substrates are finally stacked and therefore miss positioned inside the cell, leading to lysosomal dysfunction, which impacts a wide range of cellular functions.


Subject(s)
Cell Movement , Lysosomal Storage Diseases/metabolism , Lysosomes/metabolism , Microtubules/metabolism , Molecular Motor Proteins/metabolism , Proteins/metabolism , Humans , Lysosomal Storage Diseases/genetics , Metabolic Networks and Pathways/genetics , Models, Biological , Mutation , Proteins/genetics
3.
Oxid Med Cell Longev ; 2012: 205713, 2012.
Article in English | MEDLINE | ID: mdl-22720116

ABSTRACT

Niemann-Pick type C (NPC) disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serum of NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.


Subject(s)
Niemann-Pick Disease, Type C/metabolism , Oxidative Stress , Animals , Brain/metabolism , Cholesterol/metabolism , Glycosphingolipids/metabolism , Liver/metabolism , Mitochondria/metabolism , Niemann-Pick Disease, Type C/pathology , Peroxisomes/metabolism , Proteins/metabolism , Vitamin E/metabolism
4.
Biometals ; 25(4): 777-86, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22526561

ABSTRACT

Niemann-Pick type C disease (NPC) is a hereditary neurovisceral atypical lipid storage disorder produced by mutations in the NPC1 and NPC2 genes. The disease is characterized by unesterified cholesterol accumulation in late endosomal/lysosomal compartments and oxidative stress. The most affected tissues are the cerebellum and the liver. The lysotropic drug U18666A (U18) has been widely used as a pharmacological model to induce the NPC phenotype in several cell culture lines. It has already been reported that there is an increase in copper content in hepatoma Hu7 cells treated with U18. We confirmed this result with another human hepatoma cell line, HepG2, treated with U18 and supplemented with copper in the media. However, in mouse hippocampal primary cultures treated under similar conditions, we did not find alterations in copper content. We previously reported increased copper content in the liver of Npc1 (-/-) mice compared to control animals. Here, we extended the analysis to the copper content in the cerebella, the plasma and the bile of NPC1 deficient mice. We did not observe a significant change in copper content in the cerebella, whereas we found increased copper content in the plasma and decreased copper levels in the bile of Npc1(-/-) mice. Finally, we also evaluated the plasma content of ceruloplasmin, and we found an increase in this primary copper-binding protein in Npc1 (-/-) mice. These results indicate cell-type dependence of copper accumulation in NPC disease and suggest that copper transport imbalance may be relevant to the liver pathology observed in NPC disease.


Subject(s)
Copper/blood , Copper/metabolism , Niemann-Pick Diseases/blood , Niemann-Pick Diseases/metabolism , Androstenes , Animals , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Ceruloplasmin/metabolism , Cholesterol/metabolism , Hep G2 Cells , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred BALB C , Niemann-Pick C1 Protein , Proteins/genetics , Proteins/metabolism , Rats
5.
J Lipids ; 2012: 547643, 2012.
Article in English | MEDLINE | ID: mdl-22132343

ABSTRACT

Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition.

SELECTION OF CITATIONS
SEARCH DETAIL
...