Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 636: 122808, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36889415

ABSTRACT

Two of the most promising techniques in terms of ex vivo skin imaging and quantifying are confocal Raman microscopy and MALDI-TOF mass spectrometry imaging (MALDI-TOF MSI). Both techniques were set up, and the semiquantitative skin biodistribution of previously developed dexamethasone (DEX) loaded lipomers was compared using Benzalkonium chloride (BAK) as a tracer of the nanoparticles. In MALDI-TOF MSI, DEX was derivatised with GirT (DEX-GirT) and the semiquantitative biodistribution of both DEX-GirT and BAK was successfully obtained. The amount of DEX measured by confocal Raman microscopy was higher than that measured by MALDI-TOF MSI, but MALDI-TOF MSI proved to be a more suitable technique for tracing BAK. An absorption-promoting tendency of DEX loaded in lipomers versus a free-DEX solution was observed in confocal Raman microscopy. The higher spatial resolution of confocal Raman microscopy (350 nm) with respect to MALDI-TOF MSI (50 µm) allowed to observe specific skin structures like hair follicles. Nevertheless, the faster sampling rate of MALDI-TOF-MSI, permitted the analysis of larger tissue regions. In conclusion, both techniques allowed to simultaneously analyze semiquantitative data together with qualitative images of biodistribution, which is a very helpful tool when designing nanoparticles that accumulate in specific anatomical regions.


Subject(s)
Microscopy , Skin , Tissue Distribution , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Dexamethasone
SELECTION OF CITATIONS
SEARCH DETAIL
...