Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(26): 28018-28027, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973934

ABSTRACT

In this work, the (TiO2)20 cluster is proposed to adsorb the methylene blue (BM) dye; thus, the quantum parameters to explain the adsorption process are calculated by means of density functional theory calculations. Eight possible configurations are obtained and labeled from M1 to M8. According to the adsorption energy values, they reveal physisorption for at least two cases, and for the rest of the systems, they exhibit chemisorption. The preferential positions that lead to good adsorption for the BM dye are parallel to the semiconductor cluster; however, when one end of the BM dye formed by hydrogen atoms is interacting with the cluster, a weak chemical interaction is reached. The chemical interactions for M4 and M5 systems generate considerable increases of their electronic gap values (E g) with respect to the rest, and this effect is explained based on iso-surfaces of frontier orbitals and electronic charge transference. The chemical interactions between these chemical species are stable under vibrational and thermal criteria. This semiconductor cluster arises as a good candidate to adsorb some dyes like BM.

2.
J Mol Model ; 19(2): 839-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23065142

ABSTRACT

The influence of vacancies and substitutional defects on the structural and electronic properties of graphene, graphene oxide, hexagonal boron nitride, and boron nitride oxide two-dimensional molecular models was studied using density functional theory (DFT) at the level of local density approximation (LDA). Bond length, dipole moment, HOMO-LUMO energy gap, and binding energy were calculated for each system with and without point defects. The results obtained indicate that the formation of a point defect does not necessary lead to structural instability; nevertheless, surface distortions and reconstruction processes were observed, mainly when a vacancy-type defect is generated. For graphene, it was found that incorporation of a point defect results in a semiconductor-semimetal transition and also increases notably its polar character. As with graphene, the formation of a point defect in a hexagonal boron nitride sheet reduces its energy gap, although its influence on the resulting dipole moment is not as dramatic as in graphene. The influence of point defects on the structural and electronic properties of graphene oxide and boron nitride oxide sheets were found to be mediated by the chemisorbed species.

SELECTION OF CITATIONS
SEARCH DETAIL
...