Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Pestic Biochem Physiol ; 201: 105882, 2024 May.
Article in English | MEDLINE | ID: mdl-38685248

ABSTRACT

White mustard, (Sinapis alba), a problematic broadleaf weed in many Mediterranean countries in arable fields has been detected as resistant to tribenuron-methyl in Tunisia. Greenhouse and laboratory studies were conducted to characterize Target-Site Resistance (TSR) and the Non-Target Site Resistance (NTSR) mechanisms in two suspected white mustard biotypes. Herbicide dose-response experiments confirmed that the two S. alba biotypes were resistant to four dissimilar acetolactate synthase (ALS)-pinhibiting herbicide chemistries indicating the presence of cross-resistance mechanisms. The highest resistance factor (>144) was attributed to tribenuron-methyl herbicide and both R populations survived up to 64-fold the recommended field dose (18.7 g ai ha-1). In this study, the metabolism experiments with malathion (a cytochrome P450 inhibitor) showed that malathion reduced resistance to tribenuron-methyl and imazamox in both populations, indicating that P450 may be involved in the resistance. Sequence analysis of the ALS gene detected target site mutations in the two R biotypes, with amino acid substitutions Trp574Leu, the first report for the species, and Pro197Ser. Molecular docking analysis showed that ALSPro197Ser enzyme cannot properly bind to tribenuron-methyl's aromatic ring due to a reduction in the number of hydrogen bonds, while imazamox can still bind. However, Trp574Leu can weaken the binding affinity between the mutated ALS enzyme and both herbicides with the loss of crucial interactions. This investigation provides substantial evidence for the risk of evolving multiple resistance in S. alba to auxin herbicides while deciphering the TSR and NTSR mechanisms conferring cross resistance to ALS inhibitors.


Subject(s)
Acetolactate Synthase , Herbicide Resistance , Herbicides , Malathion , Mutation , Sinapis , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Acetolactate Synthase/antagonists & inhibitors , Herbicides/pharmacology , Herbicide Resistance/genetics , Sinapis/drug effects , Sinapis/genetics , Malathion/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Arylsulfonates/pharmacology , Molecular Docking Simulation , Imidazoles/pharmacology
2.
Plants (Basel) ; 12(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37765479

ABSTRACT

The characterization of the mechanisms conferring resistance to herbicides in weeds is essential for developing effective management programs. This study was focused on characterizing the resistance level and the main mechanisms that confer resistance to glyphosate in a resistant (R) Steinchisma laxum population collected in a Colombian rice field in 2020. The R population exhibited 11.2 times higher resistance compared to a susceptible (S) population. Non-target site resistance (NTSR) mechanisms that reduced absorption and impaired translocation and glyphosate metabolism were not involved in the resistance to glyphosate in the R population. Evaluating the target site resistance mechanisms by means of enzymatic activity assays and EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene sequencing, the mutation Pro106Ser was found in R plants of S. laxum. These findings are crucial for managing the spread of S. laxum resistance in Colombia. To effectively control S. laxum in the future, it is imperative that farmers use herbicides with different mechanisms of action in addition to glyphosate and adopt Integrate Management Programs to control weeds in rice fields of the central valleys of Colombia.

3.
Plants (Basel) ; 12(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299097

ABSTRACT

Herbicide-resistant weeds have been identified and recorded on every continent where croplands are available. Despite the diversity of weed communities, it is of interest how selection has led to the same consequences in distant regions. Brassica rapa is a widespread naturalized weed that is found throughout temperate North and South America, and it is a frequent weed among winter cereal crops in Argentina and in Mexico. Broadleaf weed control is based on glyphosate that is used prior to sowing and sulfonylureas or mimic auxin herbicides that are used once the weeds have already emerged. This study was aimed at determining whether a convergent phenotypic adaptation to multiple herbicides had occurred in B. rapa populations from Mexico and Argentina by comparing the herbicide sensitivity to inhibitors of the acetolactate synthase (ALS), 5-enolpyruvylshikimate-3-phosphate (EPSPS), and auxin mimics. Five B. rapa populations were analyzed from seeds collected in wheat fields in Argentina (Ar1 and Ar2) and barley fields in Mexico (Mx1, Mx2 and MxS). Mx1, Mx2, and Ar1 populations presented multiple resistance to ALS- and EPSPS-inhibitors and to auxin mimics (2,4-D, MCPA, and fluroxypyr), while the Ar2 population showed resistance only to ALS-inhibitors and glyphosate. Resistance factors ranged from 947 to 4069 for tribenuron-methyl, from 1.5 to 9.4 for 2,4-D, and from 2.7 to 42 for glyphosate. These were consistent with ALS activity, ethylene production, and shikimate accumulation analyses in response to tribenuron-methyl, 2,4-D, and glyphosate, respectively. These results fully support the evolution of the multiple- and cross-herbicide resistance to glyphosate, ALS-inhibitors, and auxinic herbicides in B. rapa populations from Mexico and Argentina.

4.
Pestic Biochem Physiol ; 191: 105371, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36963940

ABSTRACT

Carduus acanthoides L. is mainly a range-land weed, but in the 2010s has begun to invade GM crop production systems in Córdoba (Argentina), where glyphosate and 2,4-D have been commonly applied. In 2020, C. acanthoides was found with multiple resistance to these two herbicides. In this study, the mechanisms that confer multiple resistance to glyphosate and 2,4-D, were characterized in one resistant (R) population of C. acanthoides in comparison to a susceptible (S) population. No differences in 14C-herbicide absorption and translocation were observed between R and S populations. In addition, 14C-glyphosate was well translocated to the shoots (∼30%) and roots (∼16%) in both R and S plants, while most of 14C-2,4-D remained restricted in the treated leaf. Glyphosate metabolism did not contribute to resistance of the R population; however, as corroborated by malathion pretreatment, the mechanism of resistance to 2,4-D was enhanced metabolism (63% of the herbicide) mediated by cytochrome P450 (Cyt-P450). No differences were found in baseline EPSPS activity, copy number, and/or gene expression between the R and S populations, but a Pro-106-Ser mutation in EPSPS was present in the R population. Multiple resistances in the R population of C. acanthoides from Argentina were governed by target site resistance (a Pro-106 mutation for glyphosate) and non-target site resistance (Cyt-P450-based metabolic resistance for 2,4-D) mechanisms. This is the first case of resistance to glyphosate and 2,4-D confirmed for this weed in the world.


Subject(s)
Carduus , Herbicides , Carduus/metabolism , Herbicide Resistance/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Herbicides/pharmacology , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Glyphosate
5.
J Agric Food Chem ; 71(11): 4477-4487, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36892583

ABSTRACT

Glyphosate has been the most widely used herbicide for decades providing a unique tool, alone or in mixtures, to control weeds on citrus in Veracruz. Conyza canadensis has developed glyphosate resistance for the first time in Mexico. The level and mechanisms of resistance of four resistant populations Rs (R1, R2, R3, and R4) were studied and compared with that of a susceptible population (S). Resistance factor levels showed two moderately resistant populations (R2 and R3) and two highly resistant populations (R1 and R4). Glyphosate translocation through leaves to roots was ∼2.8 times higher in the S population than in the four R populations. A mutation (Pro106Ser) in the EPSPS2 gene was identified in the R1 and R4 populations. Mutation in the target site associated with reduced translocation is involved in increased glyphosate resistance in the R1 and R4 populations; whereas for the R2 and R3 populations, it was only mediated by reduced translocation. This is the first study of glyphosate resistance in C. canadensis from Mexico in which the resistance mechanisms involved are described in detail and control alternatives are proposed.


Subject(s)
Conyza , Herbicides , Conyza/genetics , Mexico , Herbicide Resistance/genetics , Herbicides/pharmacology , Mutation , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Glyphosate
6.
Environ Pollut ; 322: 121140, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36706859

ABSTRACT

Centaurea is a genus of winter weeds with a similar life cycle and competitive traits, which occurs in small-grains production fields in the central-southern of the Iberian Peninsula. However, most of herbicides recommended for weed management in wheat show poor control of Centaurea species. This study summarizes the biology, herbicide tolerance to acetolactate synthase (ALS) inhibitors, and recommended chemical alternatives for the control of Centaurea species. Four species (C. cyanus L., C. diluta Aiton, C. melitensis L. and C. pullata L. subsp. baetica Talavera), taxonomically characterized, were found as the main important broadleaf weeds in small-grains production fields of the Iberian Peninsula. These species showed innate tolerance to tribenuron-methyl (TM), showing LD50 values (mortality of 50% of a population) higher than the field dose of TM (20 g ai ha-1). The order of tolerance was C. diluta (LD50 = 702 g ha-1) ≫ C. pullata (LD50 = 180 g ha-1) ≫ C. cyanus (LD50 = 65 g ha-1) > C. melitensis (LD50 = 32 g ha-1). Centaurea cyanus and C. melitensis presented higher foliar retention (150-180 µL herbicide solution), absorption (14-28%) and subsequent translocation (7-12%) of TM with respect to the other two species. Centaurea spp. plants were able to metabolize 14C-TM into non-toxic forms (hydroxylated OH-metsulfuron-methyl and conjugated-metsulfuron-methyl), with cytochrome P450 (Cyt-P450) monooxygenases being responsible for herbicide detoxification. Centaurea cyanus and C. mellitensis metabolized up to 25% of TM, while C. diluta and C. pullata metabolized more than 50% of the herbicide. Centaurea species showed 80-100% survival when treated with of florasulam, imazamox and/or metsulfuron-methyl, i.e., these weeds present cross-tolerance to ALS inhibitors. In contrast, auxin mimics herbicides (2,4-D, clopyralid, dicamba, fluroxypir and MCPA) efficiently controlled the four Centaurea species. In addition, the mixture of ALS-inhibitors and auxin mimics also proved to be an interesting alternative for the control of Centaurea. These results show that plants of the genus Centaurea found in the winter cereal fields of the Iberian Peninsula have an innate tolerance to TM and cross-resistance to other ALS-inhibiting herbicides, governed by reduced absorption and translocation, but mainly by the metabolization of the herbicide via Cyt-P450.


Subject(s)
Acetolactate Synthase , Centaurea , Herbicides , Herbicides/toxicity , Acetolactate Synthase/metabolism , Centaurea/metabolism , Plant Weeds/metabolism , Cytochrome P-450 Enzyme System/metabolism
7.
Pestic Biochem Physiol ; 188: 105226, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36464346

ABSTRACT

Multiple resistance mechanisms to ALS inhibitors and auxin mimics in two Papaver rhoeas populations were investigated in wheat fields from Portugal. Dose-response trials, also with malathion (a cytochrome P450 inhibitor), cross-resistance patterns for ALS inhibitors and auxin mimics, alternative herbicides tests, 2,4-D and tribenuron-methyl absorption, translocation and metabolism experiments, together with ALS activity, gene sequencing and enzyme modelling and ligand docking were carried out. Results revealed two different resistant profiles: one population (R1) multiple resistant to tribenuron-methyl and 2,4-D, the second (R2) only resistant to 2,4-D. In R1, several target-site mutations in Pro197 and enhanced metabolism (cytochrome P450-mediated) were responsible of tribenuron-methyl resistance. For 2,4-D, reduced transport was observed in both populations, while cytochrome P450-mediated metabolism was also present in R1 population. Moreover, this is the first P. rhoeas population with enhanced tribenuron-methyl metabolism. This study reports the first case for P. rhoeas of the amino acid substitution Pro197Phe due to a double nucleotide change. This double mutation could cause reduced enzyme sensitivity to most ALS inhibitors according to protein modelling and ligand docking. In addition, this study reports a P. rhoeas population resistant to 2,4-D, apparently, with reduced transport as the sole resistance mechanism.


Subject(s)
Herbicide Resistance , Papaver , Herbicide Resistance/genetics , Indoleacetic Acids , Ligands , Mutation , 2,4-Dichlorophenoxyacetic Acid/pharmacology
8.
Front Plant Sci ; 13: 1011596, 2022.
Article in English | MEDLINE | ID: mdl-36438121

ABSTRACT

Acetolactate synthase (ALS) inhibiting herbicides (group 2) have been widely applied for the last 20 years to control Sinapis alba in cereal crops from southern Spain. In 2008, a tribenuron-methyl (TM) resistant (R) S. alba population was first reported in a cereal field in Malaga (southern Spain). In 2018, three suspected R S. alba populations (R1, R2 and R3) to TM were collected from three different fields in Granada (southern Spain, 100 km away from Malaga). The present work aims to confirm the putative resistance of these populations to TM and explore their resistance mechanisms. Dose-response assays showed that the R1, R2 and R3 populations ranging between 57.4, 44.4 and 57.1 times more resistance to TM than the susceptible population (S). A mutation in the ALS gene (Asp376Glu) was detected in the Rs S. alba populations. 14C-metabolism studies show that metabolites and TM were changing significantly faster in the R than in the S plants. Alternative chemical control trials showed that 2,4-D and MCPA (auxin mimics), glyphosate (enolpyruvyl shikimate phosphate synthase,EPSPS, inhibitor-group 9), metribuzin (PSII inhibitors/Serine 264 Binders, -group 5) and mesotrione (hydroxyphenyl pyruvate dioxygenase, HPPD, inhibitor-group 27) presented a high control of the four populations of S. alba tested, both S and R. Based on these results, it is the first case described where the Asp376Glu mutation and P450-mediated metabolism participates in resistance to TM in S. alba. Comparing these results with those found in the S. alba population in Malaga in 2008, where the resistance was TSR type (Pro197Ser), we can suggest that despite the geographical proximity (over 100 km), the resistance in these cases was due to different evolutionary events.

9.
Environ Pollut ; 306: 119438, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35561797

ABSTRACT

Clearfield® wheat (Triticum aestivum) have helped eliminate the toughest grasses and broadleaf weeds in Spain since 2005. This crop production system includes other tolerant cultivars to the application of imidazolinone (IMI) herbicides. However, the continuous use and off-label rates of IMI herbicides can contribute to the development of resistance in Lolium rigidum and other weed species. In this research, the main objectives were to study the resistance mechanisms to acetolactate synthase (ALS) and acetyl coenzyme A carboxylase (ACCase) inhibitors in a L. rigidum accession (LrR) from a Clearfield® wheat field, with a long history rotating these IMI-tolerant crops and compare them with those present in the IMI-tolerant wheat. The resistance to ACCase inhibitors in LrR was due to point mutations (Ile1781Leu plus Asp2078Gly) of the target site gene plus an enhanced herbicide metabolism (EHM), on the other hand, in wheat accessions was due only by EHM. Mechanisms involved in the resistance to ALS inhibitors were both point mutations of the target gene and EHM in the IMI-tolerant wheat, while only evidence of mutation (Trp574Leu) was found in the multiple herbicide resistant L. rigidum accession. This research demonstrates that if crop rotation is not accompanied by the use of alternative sites of action in herbicide-tolerant crops, resistant weeds to herbicide to which crops are tolerant, can easily be selected. Moreover, repeated and inappropriate use of Clearfield® crops and herbicide rotations can lead to the evolution of multiple resistant weeds, as shown in this study, and have also inestimable environmental impacts.


Subject(s)
Acetolactate Synthase , Herbicides , Lolium , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Crops, Agricultural/metabolism , Herbicide Resistance/genetics , Herbicides/metabolism , Herbicides/toxicity , Lolium/metabolism , Triticum/genetics , Triticum/metabolism
10.
J Agric Food Chem ; 69(49): 14792-14801, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34852464

ABSTRACT

The repeated use of herbicides can lead to the selection of multiple resistance weeds. Some populations of Conyza bonariensis occurring in olive groves from southern Spain have developed resistance to various herbicides. This study determined the resistance levels to 2,4-D, glyphosate, diflufenican, paraquat, and tribenuron-methyl in a putative resistant (R) C. bonariensis population, and the possible non-target-site resistance (NTSR) mechanisms involved were characterized. Resistance factors varied as follows: glyphosate (8.9), 2,4-D (4.8), diflufenican (5.0), tribenuron-methyl (19.6), and paraquat (85.5). Absorption of 14C-glyphosate was up to 25% higher in the susceptible (S) population compared to the R one, but 14C-paraquat absorption was similar (up to 70%) in both populations. S plants translocated more than 60% of both 14C-glyphosate and 14C-paraquat toward shoots and roots, while R plants translocated less than 10%. The R population was able to metabolize 57% of the 2,4-D into nontoxic metabolites and 68% of the tribenuron-methyl into metsulfuron-methyl (10%), metsulfuron-methyl-hydroxylate (18%), and conjugate-metsulfuron-methyl (40%). Among the NTSR mechanisms investigated, absorption and translocation could be involved in glyphosate resistance, but only translocation for paraquat. Proofs of the presence of enhanced metabolism as a resistance mechanism were found for tribenuron-methyl and 2,4-D, but not for diflufenican. This research informs the first occurrence of multiple resistance to five herbicide classes (acetolactate synthase inhibitors, 5-enolpyruvylshikimate-3-phosphate synthase inhibitors, photosystem I electron diverters, photosystem II inhibitors, and synthetic auxin herbicides) in C. bonariensis.


Subject(s)
Acetolactate Synthase , Conyza , Herbicides , 3-Phosphoshikimate 1-Carboxyvinyltransferase , Herbicide Resistance , Herbicides/pharmacology
11.
Plants (Basel) ; 10(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34834611

ABSTRACT

Weeds, such as Phalaris spp., can drastically reduce the yield of crops, and the evolution of resistance to herbicides has further exacerbated this issue. Thus far, 23 cases of herbicide resistance in 11 countries have been reported in Phalaris spp., including Phalaris minor Retz., Phalaris paradoxa L., and Phalaris brachystachys L., for photosystem II (PS-II), acetyl-CoA carboxylase (ACCase), and acetolactate synthase (ALS)-inhibiting herbicides. This paper will first review the cases of herbicide resistance reported in P. minor, P. paradoxa, and P. brachystachys. Then, the mechanisms of resistance in Phalaris spp. are discussed in detail. Finally, the fitness cost of herbicide resistance and the literature on the management of herbicide-resistant weeds from these species are reviewed.

12.
Plants (Basel) ; 10(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34451748

ABSTRACT

Species of Phalaris have historically been controlled by acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides; however, overreliance on herbicides with this mechanism of action has resulted in the selection of resistant biotypes. The resistance to ACCase-inhibiting herbicides was characterized in Phalaris brachystachys, Phalaris minor, and Phalaris paradoxa samples collected from winter wheat fields in northern Iran. Three resistant (R) biotypes, one of each Phalaris species, presented high cross-resistance levels to diclofop-methyl, cycloxydim, and pinoxaden, which belong to the chemical families of aryloxyphenoxypropionates (FOPs), cyclohexanediones (DIMs), and phenylpyrazolines (DENs), respectively. The metabolism of 14C-diclofop-methyl contributed to the resistance of the P. brachystachys R biotype, while no evidence of herbicide metabolism was found in P. minor or P. paradoxa. ACCase in vitro assays showed that the target sites were very sensitive to FOP, DIM, and DEN herbicides in the S biotypes of the three species, while the R Phalaris spp. biotypes presented different levels of resistance to these herbicides. ACCase gene sequencing confirmed that cross-resistance in Phalaris species was conferred by specific point mutations. Resistance in the P. brachystachys R biotype was due to target site and non-target-site resistance mechanisms, while in P. minor and P. paradoxa, only an altered target site was found.

13.
Chemosphere ; 281: 130888, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34029964

ABSTRACT

At present, appearance of herbicide resistant weeds is not new because repeated herbicide treatments per agricultural year/cycle are usual in both perennial and annual crops worldwide. Characterizing resistance mechanisms implied in each herbicide resistant weed is the best tool and the basis to develop integrated weed management (IWM) strategies. The main resistance mechanisms which confer low sensibility to glyphosate in a previously confirmed glyphosate-resistant Chloris radiata population (ChrR), occurring in Colombian rice fields, were characterized. Pure line selection by clone plants showed high resistance levels in ChrR. Comparing with GR50 and LD50 values, ChrR was 9.6 and 10.8 times more resistant with respect to a representative susceptible population (ChrS). The nontarget site mechanisms reduced glyphosate absorption and translocation did not contribute to the glyphosate resistance of the ChrR population. However, enzyme activity assays and DNA sequencing demonstrated that at least one target-site resistance mechanism is involved in such resistance. All ten ChrR plants tested had the amino acid substitution Pro-106-Ser. The results may be crucial to decrease the resistance distribution of C. radiata in Colombia by implementing IWM programs. The change in weed control strategies in rice fields from Colombia must include herbicides with different mode of action from glyphosate and non chemical methods to preserve the useful life of glyphosate longer for weed control in the country.


Subject(s)
Herbicides , Oryza , Colombia , Glycine/analogs & derivatives , Glycine/toxicity , Herbicide Resistance/genetics , Herbicides/toxicity , Oryza/genetics , Glyphosate
14.
Environ Pollut ; 281: 117013, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33794397

ABSTRACT

Premix or tank mix of glyphosate and 2,4-D are a good alternative to control glyphosate-resistant and -tolerant weeds; however, the combination of herbicides may increase the environmental impacts, since mixtures often have higher toxicity than a single herbicide. In addition, antagonism between these herbicides has also been reported. We compared the efficacy of a premix glyphosate+2,4-D formulation with respect to the tank mix of both herbicides on glyphosate-resistant Conyza canadensis and -tolerant Epilobium ciliatum populations in laboratory and field experiments. 2,4-D suppressed the glyphosate-resistance/tolerance of both species, whose populations presented similar responses to their susceptible counterparts (LD50 ≥ 480+320 g ha-1 glyphosate + 2,4-D, respectively). Plants of both species treated with the premix formulations retained ∼100-µL more herbicide solution, accumulated 20-25% and 28-38% more shikimate and ethylene, respectively, and presented greater 14C-glyphosate absorption and translocation, depending on the species, compared to plants treated with the tank mix treatment. Although doubling the field dose (720 + 480 g ha-1) improved (5-22%) the control of these weeds in the field, split applications of both premix and tank mix provided the best control levels (≤70%), but premix treatments maintained control levels above 85% for longer (120-d). No antagonism between glyphosate and 2,4-D was found. The addition of 2,4-D controlled both broadleaf species. For all parameters evaluated on the C. canadensis and E. ciliatum populations in the laboratory and in the field, the premix treatments showed better performance than the tank mix treatments. Premix formulations could reduce the environmental impact of herbicides used to control glyphosate resistant/tolerant weeds by decreasing the herbicide amount needed to achieve an acceptable weed control level.


Subject(s)
Conyza , Epilobium , Herbicides , 2,4-Dichlorophenoxyacetic Acid/toxicity , Glycine/analogs & derivatives , Herbicide Resistance , Herbicides/toxicity , Glyphosate
15.
Front Plant Sci ; 12: 617040, 2021.
Article in English | MEDLINE | ID: mdl-33679831

ABSTRACT

The levels of resistance to glyphosate of 13 barnyard grass (Echinochloa crus-galli) populations harvested across different agriculture areas in the Southern Iberian Peninsula were determined in greenhouse and laboratory experiments. Shikimate accumulation fast screening separated the populations regarding resistance to glyphosate: susceptible (S) E2, E3, E4, and E6 and resistant (R) E1, E5, E7, E8, E9, E10, E11, E12, and E13. However, resistance factor (GR50 E1-E13/GR50 E6) values separated these populations into three groups: (S) E2, E3, E4, and E6, (R) E1, E5, E7, E8, and E9, and very resistant (VR) E10, E11, E12, and E13. 14C-glyphosate assays performed on two S populations (E2 and E6) showed greater absorption and translocation than those found for R (E7 and E9) and VR (E10 and E12) populations. No previous population metabolized glyphosate to amino methyl phosphonic acid (AMPA) and glyoxylate, except for the E10 population that metabolized 51% to non-toxic products. The VR populations showed two times more 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity without herbicide than the rest, while the inhibition of the EPSPS activity by 50% (I50) required much higher glyphosate in R and VR populations than in S populations. These results indicated that different target-site and non-target-site resistance mechanisms were implicated in the resistance to glyphosate in E. crus-galli. Our results conclude that resistance is independent of climate, type of crop, and geographic region and that the level of glyphosate resistance was mainly due to the selection pressure made by the herbicide on the different populations of E. crus-galli studied.

16.
Front Plant Sci ; 12: 617945, 2021.
Article in English | MEDLINE | ID: mdl-33679832

ABSTRACT

Bromus catharticus Vahl. has been used as a valuable forage crop, but it has also been noted as a weed of winter crops and an invader in several countries. In Argentina, a putative glyphosate-resistant population of B. catharticus was identified as a consequence of the lack of effective control with glyphosate in the pre-sowing of wheat. Plant survival and shikimate accumulation analysis demonstrated a lower glyphosate-sensitivity of this population in comparison to a susceptible B. catharticus population. The resistant population was 4-fold more resistant to glyphosate than its susceptible counterpart. There was no evidence of target-site mechanisms of glyphosate resistance or an enhanced capacity to metabolize glyphosate in the resistant population. However, the resistant plants showed a lower foliar retention of glyphosate (138.34 µl solution g-1 dry weight vs. 390.79 µl solution g-1 dry weight), a reduced absorption of 14C-glyphosate (54.18 vs. 73.56%) and lower translocation of 14C-glyphosate from the labeled leaf (27.70 vs. 62.36%). As a result, susceptible plants accumulated a 4.1-fold higher concentration of 14C-glyphosate in the roots compared to resistant plants. The current work describes the first worldwide case of glyphosate resistance in B. catharticus. A reduced foliar retention of herbicide, a differential rate of glyphosate entry into leaves and an altered glyphosate translocation pattern would be the most likely mechanisms of glyphosate exclusion.

17.
J Agric Food Chem ; 69(4): 1197-1205, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33470815

ABSTRACT

The occurrence of multiple herbicide resistant weeds has increased considerably in glyphosate-resistant soybean fields in Brazil; however, the mechanisms governing this resistance have not been studied. In its study, the target-site and nontarget-site mechanisms were characterized in an Eleusine indica population (R-15) with multiple resistance to the acetyl-CoA carboxylase (ACCase) inhibitors, glyphosate, imazamox, and paraquat. Absorption and translocation rates of 14C-diclofop-methyl14C-imazamox and 14C-glyphosate of the R-15 population were similar to those of a susceptible (S-15) population; however, the R-15 population translocated ∼38% less 14C-paraquat to the rest of plant and roots than the S-15 population. Furthermore, the R-15 plants metabolized (by P450 cytochrome) 55% and 88% more diclofop-methyl (conjugate) and imazamox (imazamox-OH and conjugate), respectively, than the S-15 plants. In addition, the Pro-106-Ser mutation was found in the EPSPS gene of this population. This report describes the first characterization of the resistance mechanisms in a multiple herbicide resistant weed from Brazil.


Subject(s)
Eleusine/drug effects , Glycine/analogs & derivatives , Herbicide Resistance , Herbicides/pharmacology , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Brazil , Eleusine/enzymology , Eleusine/genetics , Enzyme Inhibitors/pharmacology , Glycine/pharmacology , Imidazoles/pharmacology , Paraquat/pharmacology , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Plant Proteins/metabolism , Glyphosate
18.
Front Plant Sci ; 11: 553948, 2020.
Article in English | MEDLINE | ID: mdl-33193482

ABSTRACT

Different Lolium species, common weeds in cereal fields and fruit orchards in Chile, were reported showing isolated resistance to the acetyl CoA carboxylase (ACCase), acetolactate synthase (ALS) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibiting herbicides in the late 1990s. The first case of multiple resistance to these herbicides was Lolium multiflorum found in spring barley in 2007. We hypothesized that other Lolium species may have evolved multiple resistance. In this study, we characterized the multiple resistance to glyphosate, diclofop-methyl and iodosulfuron-methyl-sodium in Lolium rigidum, Lolium perenne and Lolium multiflorum resistant (R) populations from Chile collected in cereal fields. Lolium spp. populations were confirmed by AFLP analysis to be L. rigidum, L. perenne and L. multiflorum. Dose-response assays confirmed multiple resistance to glyphosate, diclofop-methyl and iodosulfuron methyl-sodium in the three species. Enzyme activity assays (ACCase, ALS and EPSPS) suggested that the multiple resistance of the three Lolium spp. was caused by target site mechanisms, except the resistance to iodosulfuron in the R L. perenne population. The target site genes sequencing revealed that the R L. multiflorum population presented the Pro-106-Ser/Ala (EPSPS), Ile-2041-Asn++Asp-2078-Gly (ACCase), and Trp-574-Leu (ALS) mutations; and the R L. rigidum population had the Pro-106-Ser (EPSPS), Ile-1781-Leu+Asp-2078-Gly (ACCase) and Pro-197-Ser/Gln+Trp-574-Leu (ALS) mutations. Alternatively, the R L. perenne population showed only the Asp-2078-Gly (ACCase) mutation, while glyphosate resistance could be due to EPSPS gene amplification (no mutations but high basal enzyme activity), whereas iodosulfuron resistance presumably could involve non-target site resistance (NTSR) mechanisms. These results support that the accumulation of target site mutations confers multiple resistance to the ACCase, ALS and EPSPS inhibitors in L. multiflorum and L. rigidum from Chile, while in L. perenne, both target and NTSR could be present. Multiple resistance to three herbicide groups in three different species of the genus Lolium in South America represents a significant management challenge.

19.
Sci Rep ; 10(1): 17681, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077813

ABSTRACT

Amaranthus hybridus is one of the main weed species in Córdoba, Argentina. Until recently, this weed was effectively controlled with recurrent use of glyphosate. However, a population exhibiting multiple resistance (MR2) to glyphosate and imazamox appeared in a glyphosate resistant (GR) soybean field, with levels of resistance up to 93 and 38-fold higher to glyphosate and imazamox, respectively compared to the susceptible (S) population. In addition to imidazolinones, MR2 plants showed high resistance levels to sulfonylamino-carbonyl (thio) benzoates and moderate resistance to sulfonylureas and triazolopyrimidines. Multiple amino acid substitutions were found in both target genes, acetolactate synthase (ALS) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), responsible for conferring high herbicides resistance levels in this A. hybridus population. In the case of EPSPS, the triple amino acid substitution TAP-IVS was found. In addition, MR2 plants also showed increased EPSPS gene expression compared to susceptible plants. A Ser653Asn substitution was found in the ALS sequence of MR2, explaining the pattern of cross-resistance to the ALS-inhibitor herbicide families found at the ALS enzyme activity level. No other mutations were found in other conserved domains of the ALS gene. This is the first report worldwide of the target site resistance mechanisms to glyphosate and ALS inhibitors in multiple herbicide resistance Amaranthus hybridus.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Acetolactate Synthase/genetics , Amaranthus/genetics , Enzyme Inhibitors/pharmacology , Genes, Plant , Glycine/analogs & derivatives , Herbicide Resistance/genetics , Mutation , Acetolactate Synthase/antagonists & inhibitors , Glycine/pharmacology , Glyphosate
20.
Plant Physiol Biochem ; 151: 681-688, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32353674

ABSTRACT

Herbicides that inhibit acetyl-coenzyme A carboxylase (ACCase) are commonly used to control weedy grasses such as short-spike canarygrass (Phalaris brachystachys). Two resistant biotypes of P. brachystachys (R1 and R2) were found in different winter wheat fields in Iran. This study was done to confirm the suspected resistance observed in the field and to elucidate the resistance mechanisms involved. The results indicated that the both resistant biotypes showed cross-resistance to diclofop-methyl (DM), pinoxaden (PN) and cycloxydim (CD) herbicides. Based on the herbicide dose that inhibited 50% of the ACCase activity (I50), the ACCase activity of the resistant biotypes was less sensitive than the S biotype to DM, CD, and PN. No differences in translocation were detected between biotypes; most of the herbicide remained in the treated leaves. The 14C-DM metabolites were identified using thin-layer chromatography. Pre-treatment with the cytochrome P450 inhibitor ABT inhibited 14C-DM metabolism in the R1 biotype, indicating that metabolism is involved in the DM resistance in the R1 biotype. DNA sequencing studies found an Ile-1781-Thr change in both resistant biotypes, conferring cross-resistance to ACCase inhibitors. In general, in the R1 biotype which showed a higher level of resistance than that of the R2 biotype, cross-resistance was observed because of mutation and DM metabolism, while in the R2 biotype, the mutation confers resistance to ACCase-inhibiting herbicides. This is the first reported evidence of the mechanisms responsible for the resistance to ACCase herbicides in P. brachystachys. These results could be useful for improved management of resistant biotypes carrying similar mutations.


Subject(s)
Herbicide Resistance , Herbicides , Phalaris , Acetyl-CoA Carboxylase/antagonists & inhibitors , Herbicide Resistance/genetics , Herbicides/pharmacology , Iran , Mutation , Phalaris/drug effects , Phalaris/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...