Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Neuropsychopharmacology ; 48(13): 1859-1868, 2023 12.
Article in English | MEDLINE | ID: mdl-37301901

ABSTRACT

Mistuning of synaptic transmission has been proposed to underlie many psychiatric disorders, with decreased reuptake of the excitatory neurotransmitter glutamate as one contributing factor. Synaptic tuning occurs through several diverging and converging forms of plasticity. By recording evoked field postsynaptic potentials in the CA1 area in hippocampal slices, we found that inhibiting glutamate transporters using DL-TBOA causes retuning of synaptic transmission, resulting in a new steady state with reduced synaptic strength and a lower threshold for inducing long-term synaptic potentiation (LTP). Moreover, a similar reduced threshold for LTP was observed in a rat model of depression with decreased levels of glutamate transporters. Most importantly, we found that the antidepressant ketamine counteracts the effects of increased glutamate on the various steps involved in synaptic retuning. We, therefore, propose that ketamine's mechanism of action as an antidepressant is to restore adequate synaptic tuning.


Subject(s)
Ketamine , Humans , Rats , Animals , Ketamine/pharmacology , Hippocampus , Long-Term Potentiation/physiology , Synaptic Transmission , Antidepressive Agents/pharmacology , Glutamates , Synapses
2.
Cells ; 10(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34440640

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and results in severe neurodegeneration and progressive cognitive decline. Neurotrophins are growth factors involved in the development and survival of neurons, but also in underlying mechanisms for memory formation such as hippocampal long-term potentiation. Our aim was to identify small molecules with stimulatory effects on the signaling of two neurotrophins, the nerve growth factor (NGF) and the brain derived neurotrophic factor (BDNF). To identify molecules that could potentiate neurotrophin signaling, 25,000 molecules were screened, which led to the identification of the triazinetrione derivatives ACD855 (Ponazuril) and later on ACD856, as positive allosteric modulators of tropomyosin related kinase (Trk) receptors. ACD855 or ACD856 potentiated the cellular signaling of the neurotrophin receptors with EC50 values of 1.9 and 3.2 or 0.38 and 0.30 µM, respectively, for TrkA or TrkB. ACD855 increased acetylcholine levels in the hippocampus by 40% and facilitated long term potentiation in rat brain slices. The compounds acted as cognitive enhancers in a TrkB-dependent manner in several different behavioral models. Finally, the age-induced cognitive dysfunction in 18-month-old mice could be restored to the same level as found in 2-month-old mice after a single treatment of ACD856. We have identified a novel mechanism to modulate the activity of the Trk-receptors. The identification of the positive allosteric modulators of the Trk-receptors might have implications for the treatment of Alzheimer's diseases and other diseases characterized by cognitive impairment.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Cognition/drug effects , Cognitive Dysfunction/drug therapy , Nootropic Agents/pharmacology , Receptors, Nerve Growth Factor/agonists , Age Factors , Animals , Brain/enzymology , Brain/physiopathology , Cell Line, Tumor , Cognitive Dysfunction/enzymology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Disease Models, Animal , Humans , Male , Maze Learning/drug effects , Membrane Glycoproteins , Mice, Inbred C57BL , Motor Activity/drug effects , Protein-Tyrosine Kinases , Rats, Sprague-Dawley , Receptor, trkA/agonists , Receptor, trkA/metabolism , Receptor, trkB/agonists , Receptor, trkB/metabolism , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism , Signal Transduction , Small Molecule Libraries , Triazines/pharmacology
3.
Sci Rep ; 11(1): 3736, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580102

ABSTRACT

Alterations in brain cholesterol homeostasis in midlife are correlated with a higher risk of developing Alzheimer's disease (AD). However, global cholesterol-lowering therapies have yielded mixed results when it comes to slowing down or preventing cognitive decline in AD. We used the transgenic mouse model Cyp27Tg, with systemically high levels of 27-hydroxycholesterol (27-OH) to examine long-term potentiation (LTP) in the hippocampal CA1 region, combined with dendritic spine reconstruction of CA1 pyramidal neurons to detect morphological and functional synaptic alterations induced by 27-OH high levels. Our results show that elevated 27-OH levels lead to enhanced LTP in the Schaffer collateral-CA1 synapses. This increase is correlated with abnormally large dendritic spines in the stratum radiatum. Using immunohistochemistry for synaptopodin (actin-binding protein involved in the recruitment of the spine apparatus), we found a significantly higher density of synaptopodin-positive puncta in CA1 in Cyp27Tg mice. We hypothesize that high 27-OH levels alter synaptic potentiation and could lead to dysfunction of fine-tuned processing of information in hippocampal circuits resulting in cognitive impairment. We suggest that these alterations could be detrimental for synaptic function and cognition later in life, representing a potential mechanism by which hypercholesterolemia could lead to alterations in memory function in neurodegenerative diseases.


Subject(s)
Hippocampus/metabolism , Hydroxycholesterols/metabolism , Neuronal Plasticity/physiology , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Animals , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Cognitive Dysfunction/prevention & control , Dendritic Spines/physiology , Disease Models, Animal , Humans , Long-Term Potentiation/physiology , Male , Mice , Mice, Transgenic , Microfilament Proteins/metabolism , Pyramidal Cells/physiology , Synapses/physiology , Synaptic Transmission/physiology
4.
Article in English | MEDLINE | ID: mdl-32973483

ABSTRACT

The majority of synaptic activity in the brain consists of glutamatergic transmission, and there are numerous mechanisms, both intra- and inter-cellular that regulate this excitatory synaptic activity. Importantly, uptake of glutamate plays an important role and a reduced level of astrocytic glutamate transporters affect the normally balanced neurotransmission and is observed in many mental disorders. However, reduced glutamate uptake affects many different synaptic mechanisms in the astrocyte as well as in the neuron, and the effects are challenging to delineate. Combining electrophysiological recordings from neurons and astrocytes as well as extracellular glutamate recordings in rat hippocampal slices, we confirmed previous work showing that synaptic stimulation induces a long-lasting depolarization of the astrocytic membrane that is dependent on inward-rectifier potassium channels. We further showed that when glutamate transporters are blocked, this astrocytic depolarization is greatly enhanced although synaptic responses are reduced. We propose that increasing the levels of synaptic glutamate through blocking glutamate transporters reduces the AMPA-mediated synaptic response while the NMDA receptor current increases, contributing to a rise in extracellular K+ leading to enhanced astrocytic depolarization.

6.
Stem Cell Res Ther ; 11(1): 320, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32727554

ABSTRACT

BACKGROUND: There are multiple promising treatment strategies for central nervous system trauma and disease. However, to develop clinically potent and safe treatments, models of human-specific conditions are needed to complement in vitro and in vivo animal model-based studies. METHODS: We established human brain stem and spinal cord (cross- and longitudinal sections) organotypic cultures (hOCs) from first trimester tissues after informed consent by donor and ethical approval by the Regional Human Ethics Committee, Stockholm (lately referred to as Swedish Ethical Review Authority), and The National Board of Health and Welfare, Sweden. We evaluated the stability of hOCs with a semi-quantitative hOC score, immunohistochemistry, flow cytometry, Ca2+ signaling, and electrophysiological analysis. We also applied experimental allogeneic human neural cell therapy after injury in the ex vivo spinal cord slices. RESULTS: The spinal cord hOCs presented relatively stable features during 7-21 days in vitro (DIV) (except a slightly increased cell proliferation and activated glial response). After contusion injury performed at 7 DIV, a significant reduction of the hOC score, increase of the activated caspase-3+ cell population, and activated microglial populations at 14 days postinjury compared to sham controls were observed. Such elevation in the activated caspase-3+ population and activated microglial population was not observed after allogeneic human neural cell therapy. CONCLUSIONS: We conclude that human spinal cord slice cultures have potential for future structural and functional studies of human spinal cord development, injury, and treatment strategies.


Subject(s)
Hematopoietic Stem Cell Transplantation , Spinal Cord Injuries , Animals , Cell- and Tissue-Based Therapy , Humans , Neurons , Spinal Cord , Spinal Cord Injuries/therapy
7.
Cells ; 9(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708718

ABSTRACT

A decrease in synaptic plasticity and/or a change in excitation/inhibition balance have been suggested as mechanisms underlying major depression disorder. However, given the crucial role of astrocytes in balancing synaptic function, particular attention should be given to the contribution of astrocytes in these mechanisms, especially since previous findings show that astrocytes are affected and exhibit reactive-like features in depression. Moreover, it has been shown that reactive astrocytes increase the synthesis and release of GABA, contributing significantly to tonic GABA inhibition. In this study we found decreased plasticity and increased tonic GABA inhibition in the prelimbic area in acute slices from the medial prefrontal cortex in the Flinders Sensitive Line (FSL) rat model of depression. The tonic inhibition can be reduced by either blocking astrocytic intracellular Ca2+ signaling or by reducing astrocytic GABA through inhibition of the synthesizing enzyme MAO-B with Selegiline. Blocking GABA synthesis also restores the impaired synaptic plasticity in the FSL prefrontal cortex, providing a new antidepressant mechanism of Selegiline.


Subject(s)
Astrocytes/metabolism , Depression/physiopathology , Neuronal Plasticity , Prefrontal Cortex/physiopathology , gamma-Aminobutyric Acid/metabolism , Animals , Astrocytes/drug effects , Atrophy , Disease Models, Animal , Long-Term Potentiation/drug effects , Male , Neuronal Plasticity/drug effects , Rats, Sprague-Dawley , Receptors, GABA/metabolism , Selegiline/pharmacology
8.
Mol Neurobiol ; 57(10): 4018-4030, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32651756

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor plays an essential role in glutamatergic transmission and synaptic plasticity and researchers are seeking for different modulators of NMDA receptor function. One possible mechanism for its regulation could be through adjacent membrane proteins. NMDA receptors coprecipitate with Na,K-ATPase, indicating a potential interaction of these two proteins. Ouabain, a mammalian cardiotonic steroid that specifically binds to Na,K-ATPase and affects its conformation, can protect from some toxic effects of NMDA receptor activation. Here we have examined whether NMDA receptor activity and downstream effects can be modulated by physiological ouabain concentrations. The spatial colocalization between NMDA receptors and the Na,K-ATPase catalytic subunits on dendrites of cultured rat hippocampal neurons was analyzed with super-resolution dSTORM microscopy. The functional interaction was analyzed with calcium imaging of single hippocampal neurons exposed to 10 µM NMDA in presence and absence of ouabain and by determination of the ouabain effect on NMDA receptor-dependent long-term potentiation. We show that NMDA receptors and the Na,K-ATPase catalytic subunits alpha1 and alpha3 exist in same protein complex and that ouabain in nanomolar concentration consistently reduces the calcium response to NMDA. Downregulation of the NMDA response is not associated with internalization of the receptor or with alterations in its state of Src phosphorylation. Ouabain in nanomolar concentration elicits a long-term potentiation response. Our findings suggest that ouabain binding to a fraction of Na,K-ATPase molecules that cluster with the NMDA receptors will, via a conformational effect on the NMDA receptors, cause moderate but consistent reduction of NMDA receptor response at synaptic activation.


Subject(s)
Ouabain/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Calcium/metabolism , Down-Regulation/drug effects , Hippocampus/cytology , Models, Biological , N-Methylaspartate/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Protein Binding/drug effects , Rats, Sprague-Dawley , Synapses/drug effects , Synapses/metabolism , src-Family Kinases/metabolism
9.
Front Neural Circuits ; 10: 13, 2016.
Article in English | MEDLINE | ID: mdl-27065810

ABSTRACT

Water-homeostasis is a fundamental physiological process for terrestrial life. In vertebrates, thirst drives water intake, but the neuronal circuits that connect the physiology of water regulation with emotional context are poorly understood. Vasopressin (VP) is a prominent messenger in this circuit, as well as L-glutamate. We have investigated the role of a VP circuit and interaction between thirst and motivational behaviors evoked by life-threatening stimuli in rats. We demonstrate a direct pathway from hypothalamic paraventricular VP-expressing, glutamatergic magnocellular neurons to the medial division of lateral habenula (LHbM), a region containing GABAergic neurons. In vivo recording and juxtacellular labeling revealed that GABAergic neurons in the LHbM had locally branching axons, and received VP-positive axon terminal contacts on their dendrites. Water deprivation significantly reduced freezing and immobility behaviors evoked by innate fear and behavioral despair, respectively, accompanied by decreased Fos expression in the lateral habenula. Our results reveal a novel VP-expressing hypothalamus to the LHbM circuit that is likely to evoke GABA-mediated inhibition in the LHbM, which promotes escape behavior during stress coping.


Subject(s)
Glutamic Acid/metabolism , Habenula/physiology , Signal Transduction/physiology , Stress, Psychological/physiopathology , Thirst/physiology , Vasopressins/metabolism , Animals , Cats , Colchicine/pharmacology , Disease Models, Animal , Fear/psychology , Glutamate Decarboxylase/metabolism , Habenula/cytology , Habenula/drug effects , Habenula/ultrastructure , Male , Neurons/drug effects , Neurons/ultrastructure , Oncogene Proteins v-fos/metabolism , Paraventricular Hypothalamic Nucleus/cytology , Paraventricular Hypothalamic Nucleus/ultrastructure , Rats , Rats, Wistar , Signal Transduction/drug effects , Stress, Psychological/pathology , Synapses/metabolism , Thirst/drug effects , Tubulin Modulators/pharmacology , Water Deprivation/physiology , gamma-Aminobutyric Acid/metabolism
10.
Front Neuroanat ; 9: 130, 2015.
Article in English | MEDLINE | ID: mdl-26500509

ABSTRACT

Conventional neuroanatomical, immunohistochemical techniques, and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP)-containing magnocellular neurons (magnocells) in the hypothalamic paraventricular nucleus (PVN). Here, we used in vivo extracellular recording, juxtacellular labeling, post-hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus (SCN), lateral habenula (LHb), medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an "occasional" phenomenon as previously thought.

11.
Neurochem Res ; 37(11): 2379-87, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22544664

ABSTRACT

Brain edema is a severe clinical complication in a number of pathologies and is a major cause of increased morbidity and death. The swelling of astrocytes caused by a disruption of water and ion homeostasis, is the primary event contributing to the cytotoxic form of brain edema. Astrocyte cytotoxic swelling ultimately leads to transcapillary fluxes of ions and water into the brain parenchyma. This review focuses on the implication of transporters and channels in cytotoxic astrocyte swelling in hyponatremia, ischemia, trauma and hepatic encephalopathy. Emphasis is put on some salient features of the astrocyte physiology, all related to cell swelling, i.e. predominance of aquaporins, control of K(+) homeostasis and ammonia accumulation during the brain ammonia-detoxifying process.


Subject(s)
Astrocytes/physiology , Ion Channels/physiology , Membrane Transport Proteins/physiology , Animals , Aquaporins/physiology , Chloride Channels/physiology , Hepatic Encephalopathy/physiopathology , Humans
12.
Biosci Rep ; 31(6): 489-97, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21568938

ABSTRACT

Hypertonicity is a stressful stimulus leading to cell shrinkage and apoptotic cell death. Apoptosis can be prevented if cells are able to activate the mechanism of RVI (regulatory volume increase). This study in mIMCD3 cells presents evidence of a permissive role of the EGFR (epidermal growth factor receptor) on RVI, achieved for the most part through the two main EGFR-triggered signalling chains, the MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) and the PI3K (phosphoinositide 3-kinase)/Akt (also known as protein kinase B) pathways. Hyperosmotic solutions (450 mosM) made by addition of NaCl, increased EGFR phosphorylation, which is prevented by GM6001 and AG1478, blockers respectively, of MMPs (matrix metalloproteinases) and EGFR. Inhibition of EGFR, ERK (PD98059) or PI3K/Akt (wortmannin) phosphorylation reduced RVI by 60, 48 and 58% respectively. The NHE (Na(+)/H(+) exchanger) seems to be the essential mediator of this effect since (i) NHE is the main contributor to RVI, (ii) EGFR, ERK and PI3K/Akt blockers added together with the NHE blocker zoniporide reduce RVI by non-additive effects and (iii) All the blockers significantly lowered the NHE rate in cells challenged by an NH(4)Cl pulse. Besides reducing RVI, the inhibition of MMP, EGFR and PI3K/Akt had a strong pro-apoptotic effect increasing cell death by 2-3.7-fold. This effect was significantly lower when RVI inhibition did not involve the EGFR-PI3K/Akt pathway. These results provide evidence that Akt and its permissive effect on RVI have a predominant influence on cell survival under hypertonic conditions in IMCD3 cells. This role of Akt operates under the influence of EGFR activation, promoted by MMP.


Subject(s)
Apoptosis , Cell Size , ErbB Receptors/metabolism , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Saline Solution, Hypertonic/administration & dosage , Sodium-Hydrogen Exchangers/metabolism , Animals , Cell Line , Enzyme Activation , ErbB Receptors/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/physiology , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction , Sodium-Hydrogen Exchangers/antagonists & inhibitors
13.
J Neurochem ; 111(6): 1398-408, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19799708

ABSTRACT

Thrombin levels increase in brain during ischemia and hemorrhagic episodes, and may contribute to excitotoxic neural damage. This study examined the effect of thrombin on glutamate efflux from rat cortical cultured astrocytes using 3H-D-aspartate as radiotracer. The glutamate efflux was initiated by addition of 100 mM K+ plus 1 mM ouabain (K/O) to replicate extracellular and intracellular ionic changes that occur during cerebral ischemia. Upon exposure to K/O, astrocytes swelled slowly and progressively with no evidence of volume regulation. The K/O-induced swelling was inhibited by 65% with bumetanide and 25% with BaCl2, suggesting contribution of Na+/K+/Cl) co-transporter and Kir channels. K/O-elicited 3H-D-aspartate that consisted of two phases. The first transient component of the release corresponded to 13.5% of total 3H-D-aspartate loaded. It was markedly reduced (61%) by the glutamate transporter blocker DL-threo-b-benzyloxyaspartic acid and weakly inhibited (21%) by the volume-sensitive anion channel blocker 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-di-hydro-1oxo-1H-inden-5-yl)oxy] butanoic acid (DCPIB). During the second sustained phase of release, cells lost 45% of loaded of 3H-D-aspartate via a mechanism that was insensitive to DL-threo-b-benzyloxyaspartic acid but nearly completely suppressed by DCPIB. Thrombin (5 U/mL) had only marginal effects on the first phase but strongly potentiated(more than two-fold) 3H-D-aspartate efflux in the second phase. The effect of thrombin effect was proportional to cell swelling and completely suppressed by DCPIB. Overall our data showed that under K/O swelling conditions, thrombin potently enhance glutamate release via volume-sensitive anion channel. Similar mechanisms may contribute to brain damage in neural pathologies which are associated with cell swelling, glutamate efflux and increased thrombin levels.


Subject(s)
Astrocytes/drug effects , D-Aspartic Acid/metabolism , Hemostatics/pharmacology , Homeostasis/drug effects , Potassium/metabolism , Thrombin/pharmacology , Animals , Animals, Newborn , Aspartic Acid/pharmacology , Barium/pharmacology , Bumetanide/pharmacology , Calcium/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Cyclopentanes/pharmacology , D-Aspartic Acid/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Indans/pharmacology , Oligopeptides/pharmacology , Ouabain/pharmacology , Rats , Rats, Wistar , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Taurine/metabolism , Time Factors , Tritium/metabolism
14.
Cell Physiol Biochem ; 21(1-3): 1-14, 2008.
Article in English | MEDLINE | ID: mdl-18209467

ABSTRACT

Cell volume is determined genetically for each cell lineage, but it is not a static feature of the cell. Intracellular volume is continuously challenged by metabolic reactions, uptake of nutrients, intracellular displacement of molecules and organelles and generation of ionic gradients. Moreover, recent evidence raises the intriguing possibility that changes in cell volume act as signals for basic cell functions such as proliferation, migration, secretion and apoptosis. Cells adapt to volume increase by a complex, dynamic process resulting from the concerted action of volume sensing mechanisms and intricate signaling chains, directed to initiate the multiple adaptations demanded by a change in cell volume, among others adhesion reactions, membrane and cytoskeleton remodeling, and activation of the osmolyte pathways leading to reestablish the water balance between extracellular/intracellular or intracellular/intracellular compartments. In multicellular organisms, a continuous interaction with the external milieu is fundamental for the dynamics of the cell. It is in this sense that the recent surge of interest about the influence on cell volume control by the most extended family of signaling elements, the G proteins, acquires particular importance. As here reviewed, a large variety of G-protein coupled receptors (GPCRs) are involved in this interplay with cell volume regulatory mechanisms, which amplifies and diversifies the volume-elicited signaling chains, providing a variety of routes towards the multiple effectors related to cell volume changes.


Subject(s)
Cell Size , Receptors, G-Protein-Coupled/metabolism , Animals , Chloride Channels/metabolism , Humans , Potassium Channels/metabolism , Protein-Tyrosine Kinases/metabolism , Receptor Cross-Talk
15.
Mol Cell Biochem ; 306(1-2): 95-104, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17684706

ABSTRACT

Cell swelling, regulatory volume decrease (RVD), volume-sensitive Cl(-) (Cl(-) (swell)) current and taurine efflux after exposure to high concentrations of urea were characterized in fibroblasts Swiss 3T3, and results compared to those elicited by hyposmotic (30%) swelling. Urea 70, 100, and 150 mM linearly increased cell volume (8.25%, 10.6%, and 15.7%), by a phloretin-inhibitable process. This was followed by RVD by which cells exposed to 70, 100, or 150 mM urea recovered 27.6%, 38.95, and 74.1% of their original volume, respectively. Hyposmolarity (30%) led to a volume increase of 25.9% and recovered volume in 32.5%. (3)H-taurine efflux was increased by urea with a sigmoid pattern, as 9.5%, 18.9%, 71.5%, and 89% of the labeled taurine pool was released by 70, 100, 150, or 200 mM urea, respectively. Only about 11% of taurine was released by 30% hyposmolarity reduction in spite of the high increase in cell volume. Urea-induced taurine efflux was suppressed by NPPB (100 microM) and markedly reduced by the tyrosine kinase-general blocker AG18. The Cl(-) (swell) current was more rapidly activated and higher in amplitude in the hyposmotic than in the isosmotic/urea condition (urea 150 mM), but this was not sufficient to accomplish an efficient RVD. These results showed that at similar volume increase, cells swollen by urea showed higher taurine efflux, lower Cl(-) (swell) current and more efficient RVD, than in those swollen by hyposmolarity. The correlation found between RVD efficiency and taurine efflux suggest a prominent role for organic over ionic osmolytes for RVD evoked by urea in isosmotic conditions.


Subject(s)
Cell Size/drug effects , Fibroblasts/drug effects , Urea/pharmacology , Animals , Aspartic Acid/metabolism , Chlorides/metabolism , Electrophysiology , Mice , Nitrobenzoates/metabolism , Osmolar Concentration , Swiss 3T3 Cells , Taurine/metabolism
16.
Glia ; 55(9): 917-25, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17437307

ABSTRACT

High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling-activated efflux of (3)H-glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5-5 U/mL) elicited small (3)H-glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5- to 10-fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease-activated receptor-1. Thr potentiation of (3)H-glutamate efflux was largely dependent on a Thr-elicited increases in cytosolic Ca(2+) (Ca(2+) (i)) concentration ([Ca(2+)](i)). Preventing Ca(2+) (i) rise by treatment with EGTA-AM or with the phospholipase C blocker U73122 reduced the Thr-increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%-22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca(2+)-sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide-3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA-AM plus wortmannin essentially abolished Thr-dependent glutamate efflux. Thr-activated glutamate release was potently inhibited by the blockers of the volume-sensitive anion permeability pathway, NPPB (IC(50) 15.8 microM), DCPIB (IC(50) 4.2 microM), and tamoxifen (IC(50) 6.6 microM. These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma.


Subject(s)
Astrocytes/metabolism , Brain Damage, Chronic/metabolism , Brain Edema/metabolism , Glutamic Acid/metabolism , Thrombin/metabolism , Animals , Animals, Newborn , Astrocytes/drug effects , Brain Damage, Chronic/physiopathology , Brain Edema/physiopathology , Brain Injuries/metabolism , Brain Injuries/physiopathology , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cell Death/drug effects , Cell Death/physiology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Extracellular Fluid/metabolism , Hypotonic Solutions/pharmacology , Oligopeptides/pharmacology , Osmotic Pressure/drug effects , Rats , Receptors, Thrombin/drug effects , Receptors, Thrombin/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Thrombin/pharmacology , Water-Electrolyte Balance/drug effects , Water-Electrolyte Balance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...