Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Open ; 12(10)2023 10 15.
Article in English | MEDLINE | ID: mdl-37855382

ABSTRACT

The developing brain has a well-organized anatomical structure comprising different types of neural and non-neural cells. Stem cells, progenitors and newborn neurons tightly interact with their neighbouring cells and tissue microenvironment, and this intricate interplay ultimately shapes the output of neurogenesis. Given the relevance of spatial cues during brain development, we acknowledge the necessity for a spatial transcriptomics map accessible to the neurodevelopmental community. To fulfil this need, we generated spatially resolved RNA sequencing (RNAseq) data from embryonic day 13.5 mouse brain sections immunostained for mitotic active neural and vascular cells. Unsupervised clustering defined specific cell type populations of diverse lineages and differentiation states. Differential expression analysis revealed unique transcriptional signatures across specific brain areas, uncovering novel features inherent to particular anatomical domains. Finally, we integrated existing single-cell RNAseq datasets into our spatial transcriptomics map, adding tissue context to single-cell RNAseq data. In summary, we provide a valuable tool that enables the exploration and discovery of unforeseen molecular players involved in neurogenesis, particularly in the crosstalk between different cell types.


Subject(s)
Neurogenesis , Transcriptome , Animals , Mice , Neurogenesis/genetics , Cell Differentiation/genetics , Neurons/metabolism , Brain/metabolism
2.
Nucleic Acids Res ; 51(18): 9658-9671, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37615576

ABSTRACT

Methylation of cytosines in the CG context (mCG) is the most abundant DNA modification in vertebrates that plays crucial roles in cellular differentiation and identity. After fertilization, DNA methylation patterns inherited from parental gametes are remodelled into a state compatible with embryogenesis. In mammals, this is achieved through the global erasure and re-establishment of DNA methylation patterns. However, in non-mammalian vertebrates like zebrafish, no global erasure has been observed. To investigate the evolutionary conservation and divergence of DNA methylation remodelling in teleosts, we generated base resolution DNA methylome datasets of developing medaka and medaka-zebrafish hybrid embryos. In contrast to previous reports, we show that medaka display comparable DNA methylome dynamics to zebrafish with high gametic mCG levels (sperm: ∼90%; egg: ∼75%), and adoption of a paternal-like methylome during early embryogenesis, with no signs of prior DNA methylation erasure. We also demonstrate that non-canonical DNA methylation (mCH) reprogramming at TGCT tandem repeats is a conserved feature of teleost embryogenesis. Lastly, we find remarkable evolutionary conservation of DNA methylation remodelling patterns in medaka-zebrafish hybrids, indicative of compatible DNA methylation maintenance machinery in far-related teleost species. Overall, these results suggest strong evolutionary conservation of DNA methylation remodelling pathways in teleosts, which is distinct from the global DNA methylome erasure and reestablishment observed in mammals.

3.
Nat Commun ; 14(1): 2804, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193708

ABSTRACT

The assembly of the embryo's primary axis is a fundamental landmark for the establishment of the vertebrate body plan. Although the morphogenetic movements directing cell convergence towards the midline have been described extensively, little is known on how gastrulating cells interpret mechanical cues. Yap proteins are well-known transcriptional mechanotransducers, yet their role in gastrulation remains elusive. Here we show that the double knockout of yap and its paralog yap1b in medaka results in an axis assembly failure, due to reduced displacement and migratory persistence in mutant cells. Accordingly, we identified genes involved in cytoskeletal organization and cell-ECM adhesion as potentially direct Yap targets. Dynamic analysis of live sensors and downstream targets reveal that Yap is acting in migratory cells, promoting cortical actin and focal adhesions recruitment. Our results indicate that Yap coordinates a mechanoregulatory program to sustain intracellular tension and maintain the directed cell migration for embryo axis development.


Subject(s)
Adaptor Proteins, Signal Transducing , Transcription Factors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins , Focal Adhesions/genetics , Focal Adhesions/metabolism , Cell Movement/genetics
4.
Cells Dev ; 174: 203837, 2023 06.
Article in English | MEDLINE | ID: mdl-37116316

ABSTRACT

Stem cell populations are defined by their capacity to self-renew and to generate differentiated progeny. These unique characteristics largely depend on the stem cell micro-environment, the so-called stem cell niche. Niches were identified for most adult stem cells studied so far, but we know surprisingly little about how somatic stem cells and their niche come together during organ formation. Using the neuromasts of teleost fish, we have previously reported that neural stem cells recruit their niche from neighboring epithelial cells, which go through a morphological and molecular transformation. Here, we tackle quantitative, temporal, and clonal aspects of niche formation in neuromasts by using 4D imaging in transgenic lines, and lineage analysis in mosaic fish. We show that niche recruitment happens in a defined temporal window during the formation of neuromasts in medaka, and after that, the niche is enlarged mainly by the proliferation of niche cells. Niche recruitment is a non-clonal process that feeds from diverse epithelial cells that do not display a preferential position along the circumference of the forming neuromast. Additionally, we cover niche formation and expansion in zebrafish to show that distant species show common features during organogenesis in the lateral line system. Overall, our findings shed light on the process of niche formation, fundamental for the maintenance of stem cells not only in medaka but also in many other multicellular organisms.


Subject(s)
Neural Stem Cells , Oryzias , Animals , Zebrafish/metabolism , Stem Cell Niche , Mechanoreceptors/metabolism
5.
Neuron ; 110(19): 3139-3153.e6, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35998632

ABSTRACT

Of the neurotransmitters that influence neurogenesis, gamma-aminobutyric acid (GABA) plays an outstanding role, and GABA receptors support non-synaptic signaling in progenitors and migrating neurons. Here, we report that expression levels of diazepam binding inhibitor (DBI), an endozepine that modulates GABA signaling, regulate embryonic neurogenesis, affecting the long-term outcome regarding the number of neurons in the postnatal mouse brain. We demonstrate that DBI is highly expressed in radial glia and intermediate progenitor cells in the germinal zones of the embryonic mouse brain that give rise to excitatory and inhibitory cells. The mechanism by which DBI controls neurogenesis involves its action as a negative allosteric modulator of GABA-induced currents on progenitor cells that express GABAA receptors containing γ2 subunits. DBI's modulatory effect parallels that of GABAA-receptor-mediating signaling in these cells in the proliferative areas, reflecting the tight control that DBI exerts on embryonic neurogenesis.


Subject(s)
Diazepam Binding Inhibitor , Receptors, GABA-A , Animals , Diazepam/pharmacology , Diazepam Binding Inhibitor/metabolism , Embryonic Development , Mice , Neurogenesis , Neurons/physiology , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism
6.
Development ; 146(13)2019 06 21.
Article in English | MEDLINE | ID: mdl-31142542

ABSTRACT

Yap1/Taz are well-known Hippo effectors triggering complex transcriptional programs controlling growth, survival and cancer progression. Here, we describe yap1b, a new Yap1/Taz family member with a unique transcriptional activation domain that cannot be phosphorylated by Src/Yes kinases. We show that yap1b evolved specifically in euteleosts (i.e. including medaka but not zebrafish) by duplication and adaptation of yap1. Using DamID-seq, we generated maps of chromatin occupancy for Yap1, Taz (Wwtr1) and Yap1b in gastrulating zebrafish and medaka embryos. Our comparative analyses uncover the genetic programs controlled by Yap family proteins during early embryogenesis, and show largely overlapping targets for Yap1 and Yap1b. CRISPR/Cas9-induced mutation of yap1b in medaka does not result in an overt phenotype during embryogenesis or adulthood. However, yap1b mutation strongly enhances the embryonic malformations observed in yap1 mutants. Thus yap1-/-; yap1b-/- double mutants display more severe body flattening, eye misshaping and increased apoptosis than yap1-/- single mutants, thus revealing overlapping gene functions. Our results indicate that, despite its divergent transactivation domain, Yap1b cooperates with Yap1 to regulate cell survival and tissue morphogenesis during early development.


Subject(s)
Embryo Loss/genetics , Gene Expression Regulation, Developmental , Morphogenesis/genetics , Trans-Activators/physiology , Zebrafish Proteins/physiology , Animals , Animals, Genetically Modified , Embryo Loss/veterinary , Embryo, Nonmammalian , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/physiology , Mutation , Oryzias/embryology , Oryzias/genetics , Protein Domains/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/physiology , Trans-Activators/chemistry , Trans-Activators/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/physiology , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
7.
Genome Res ; 24(7): 1075-85, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24709821

ABSTRACT

The complex relationship between ontogeny and phylogeny has been the subject of attention and controversy since von Baer's formulations in the 19th century. The classic concept that embryogenesis progresses from clade general features to species-specific characters has often been revisited. It has become accepted that embryos from a clade show maximum morphological similarity at the so-called phylotypic period (i.e., during mid-embryogenesis). According to the hourglass model, body plan conservation would depend on constrained molecular mechanisms operating at this period. More recently, comparative transcriptomic analyses have provided conclusive evidence that such molecular constraints exist. Examining cis-regulatory architecture during the phylotypic period is essential to understand the evolutionary source of body plan stability. Here we compare transcriptomes and key epigenetic marks (H3K4me3 and H3K27ac) from medaka (Oryzias latipes) and zebrafish (Danio rerio), two distantly related teleosts separated by an evolutionary distance of 115-200 Myr. We show that comparison of transcriptome profiles correlates with anatomical similarities and heterochronies observed at the phylotypic stage. Through comparative epigenomics, we uncover a pool of conserved regulatory regions (≈700), which are active during the vertebrate phylotypic period in both species. Moreover, we show that their neighboring genes encode mainly transcription factors with fundamental roles in tissue specification. We postulate that these regulatory regions, active in both teleost genomes, represent key constrained nodes of the gene networks that sustain the vertebrate body plan.


Subject(s)
Epigenesis, Genetic , Epigenomics , Fishes/genetics , Phylogeny , Regulatory Sequences, Nucleic Acid , Vertebrates/genetics , Animals , Cluster Analysis , Epigenomics/methods , Fishes/anatomy & histology , Fishes/classification , Fishes/embryology , Gene Expression Profiling , Histones/metabolism , Organ Specificity/genetics , Oryzias , Species Specificity , Transcription, Genetic , Vertebrates/anatomy & histology , Vertebrates/classification , Vertebrates/embryology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...