Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 271: 116380, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33387779

ABSTRACT

A vast amount of evidence indicates that bisphenol A (BPA) and phthalates are widely distributed in the environment since these compounds are mass-produced for the manufacture of plastics and plasticizers. These compounds belong to a large group of substances termed endocrine-disrupting chemicals (EDC). It is well known that humans and living organisms are unavoidably and unintentionally exposed to BPA and phthalates from food packaging materials and many other everyday products. BPA and phthalates exert their effect by interfering with hormone synthesis, bioavailability, and action, thereby altering cellular proliferation and differentiation, tissue development, and the regulation of several physiological processes. In fact, these EDC can alter fetal programming at an epigenetic level, which can be transgenerational transmitted and may be involved in the development of various chronic pathologies later in the adulthood, including metabolic, reproductive and degenerative diseases, and certain types of cancer. In this review, we describe the most recent proposed mechanisms of action of these EDC and offer a compelling selection of experimental, epidemiological and clinical studies, which show evidence of how exposure to these pollutants affects our health during development, and their association with a wide range of reproductive, metabolic and neurological diseases, as well as hormone-related cancers. We stress the importance of concern in the general population and the urgent need for the medical health care system to closely monitor EDC levels in the population due to unavoidable and involuntary exposure to these pollutants and their impact on human health.


Subject(s)
Endocrine Disruptors , Environmental Exposure , Adult , Benzhydryl Compounds/toxicity , Health Policy , Humans , Phenols/toxicity
2.
Hum Genet ; 137(11-12): 865-879, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30386939

ABSTRACT

Ageing is one of the most complex processes in nature; how could we prevent the associated biological changes and chronic diseases that string along with this process, is a challenge in healthcare around the world. Recent advances in next-generation sequencing have reached a stage where it is possible to know from a specific tissue the most abundant transcripts, alternative splicing process and, non-coding RNA molecules (microRNA's, long non-coding RNA's, and circular RNAs). Moreover, our knowledge of several biological processes related to ageing such as senescence and autophagy have dramatically increased in the last years. In the present review, we attempt to summarise the latest scientific advances from the most critical studies performed in human clinical samples, specific to the RNA studies about ageing. Overall, human transcriptomics research indicates that although there are common alterations of the regular expression patterns of the energetic and oxidative metabolism, extracellular matrix regulation and inflammation pathways, ageing seems to be gender and tissue-specific in general. Additionally, there is an age-related implication in several numbers of impaired events on the normal alternative splicing process. On the other hand, there is a direct relation of several non-coding RNA molecules with age-related changes which indicates its possible use as biomarkers for diagnostics and therapeutically purposes. Together, these findings highlight the importance to continue focusing research on RNA studies to improve our knowledge in the pathophysiology of age-related diseases.


Subject(s)
Aging/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA/genetics , Aging/pathology , Alternative Splicing/genetics , High-Throughput Nucleotide Sequencing , Humans , RNA, Circular
3.
Food Chem Toxicol ; 91: 117-29, 2016 May.
Article in English | MEDLINE | ID: mdl-26995226

ABSTRACT

Calophyllum brasiliense (Calophyllaceae) is a tropical rain forest tree distributed in Central and South America. It is an important source of tetracyclic dipyrano coumarins (Soulatrolide) and Mammea type coumarins. Soulatrolide is a potent inhibitor of HIV-1 reverse transcriptase and displays activity against Mycobacterium tuberculosis. Meanwhile, Mammea A/BA and A/BB, pure or as a mixture, are highly active against several human leukemia cell lines, Trypanosoma cruzi and Leishmania amazonensis. Nevertheless, there are few studies evaluating their safety profile. In the present work we performed toxicogenomic and toxicological analysis for both type of compounds. Soulatrolide, and the Mammea A/BA + A/BB mixture (2.1) were slightly toxic accordingly to Lorke assay classification (DL50 > 3000 mg/kg). After a short-term administration (100 mg/kg/daily, orally, 1 week) liver toxicogenomic analysis revealed 46 up and 72 downregulated genes for Mammea coumarins, and 665 up and 1077 downregulated genes for Soulatrolide. Gene enrichment analysis identified transcripts involved in drug metabolism for both compounds. In addition, network analysis through protein-protein interactions, tissue evaluation by TUNEL assay, and histological examination revealed no tissue damage on liver, kidney and spleen after treatments. Our results indicate that both type of coumarins displayed a safety profile, supporting their use in further preclinical studies to determine its therapeutic potential.


Subject(s)
Calophyllum/chemistry , Coumarins/toxicity , Toxicogenetics , Animals , Male , Mice , Risk Assessment
4.
J Anim Sci ; 93(10): 4692-701, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26523562

ABSTRACT

Interspecies pregnancies between closely related species are usually performed in livestock to obtain improved and enriched offspring. Indeed, different hybrids have been obtained for research purposes since many years ago, and the maternal-fetal interactions have been studied as a possible strategy for species preservation. The aim of this study was to characterize by physiological and molecular approaches the interspecies pregnancy between bighorn sheep () and domestic sheep (). Hybrids were obtained by artificial insemination; the blood pressure and protein urine levels were measured during the last two-thirds of gestation. After parturition, offspring and placentas were weighed and measured and cotyledons were counted and weighed and their surface area determined. Plasma samples were obtained between wk 8 and 21 of gestation to assess progesterone (P4), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF) levels and cell-free RNA was isolated during the same period to assess hypoxia-inducible factor-1 α (α) gene expression. Hybrid and normal pregnancies were analyzed using physiological and molecular parameters during the last two-thirds of gestation (wk 8-21). The results show that during the measurement period, ewes with a hybrid pregnancy presented normal blood pressure and no alteration in urinary protein content. However, compared with sheep with a normal pregnancy, those with a hybrid pregnancy had a decrease in fetal and placental growth as well as in the cotyledonary surface area. Furthermore, in the hybrid group, there was placental insufficiency, characterized by a decrease in P4 production, as well as indications of endothelial dysfunction, characterized an increase in plasma levels of VEGF and PlGF as well as in plasma gene expression of α. Overall, the results indicate that hybrids of and presented intrauterine growth restriction, essentially due to altered endothelial function and chronic placental insufficiency. Further studies are necessary to overcome this primary placental dysfunction and thus obtain improved offspring for future molecular and genomic evaluations.


Subject(s)
Fetal Growth Retardation/veterinary , Sheep Diseases/pathology , Sheep, Bighorn/genetics , Sheep, Domestic/genetics , Animals , Female , Fetal Development/genetics , Fetal Growth Retardation/genetics , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Hybridization, Genetic , Placenta/blood supply , Placenta Growth Factor , Pregnancy , Pregnancy Proteins , Progesterone/metabolism , Sheep , Sheep Diseases/genetics , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...