Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Chem Sci ; 14(39): 10702-10717, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37829035

ABSTRACT

The rational design of molecules with targeted quantum-mechanical (QM) properties requires an advanced understanding of the structure-property/property-property relationships (SPR/PPR) that exist across chemical compound space (CCS). In this work, we analyze these fundamental relationships in the sector of CCS spanned by small (primarily organic) molecules using the recently developed QM7-X dataset, a systematic, extensive, and tightly converged collection of 42 QM properties corresponding to ≈4.2M equilibrium and non-equilibrium molecular structures containing up to seven heavy/non-hydrogen atoms (including C, N, O, S, and Cl). By characterizing and enumerating progressively more complex manifolds of molecular property space-the corresponding high-dimensional space defined by the properties of each molecule in this sector of CCS-our analysis reveals that one has a substantial degree of flexibility or "freedom of design" when searching for a single molecule with a desired pair of properties or a set of distinct molecules sharing an array of properties. To explore how this intrinsic flexibility manifests in the molecular design process, we used multi-objective optimization to search for molecules with simultaneously large polarizabilities and HOMO-LUMO gaps; analysis of the resulting Pareto fronts identified non-trivial paths through CCS consisting of sequential structural and/or compositional changes that yield molecules with optimal combinations of these properties.

2.
Nanoscale ; 15(19): 8772-8780, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37098822

ABSTRACT

Two-dimensional materials (2DMs) continue to attract a lot of attention, particularly for their extreme flexibility and superior thermal properties. Molecular dynamics simulations are among the most powerful methods for computing these properties, but their reliability depends on the accuracy of interatomic interactions. While first principles approaches provide the most accurate description of interatomic forces, they are computationally expensive. In contrast, classical force fields are computationally efficient, but have limited accuracy in interatomic force description. Machine learning interatomic potentials, such as Gaussian Approximation Potentials, trained on density functional theory (DFT) calculations offer a compromise by providing both accurate estimation and computational efficiency. In this work, we present a systematic procedure to develop Gaussian approximation potentials for selected 2DMs, graphene, buckled silicene, and h-XN (X = B, Al, and Ga, as binary compounds) structures. We validate our approach through calculations that require various levels of accuracy in interatomic interactions. The calculated phonon dispersion curves and lattice thermal conductivity, obtained through harmonic and anharmonic force constants (including fourth order) are in excellent agreement with DFT results. HIPHIVE calculations, in which the generated GAP potentials were used to compute higher-order force constants instead of DFT, demonstrated the first-principles level accuracy of the potentials for interatomic force description. Molecular dynamics simulations based on phonon density of states calculations, which agree closely with DFT-based calculations, also show the success of the generated potentials in high-temperature simulations.

3.
Nat Commun ; 13(1): 7170, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418902

ABSTRACT

The concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxide diatomic molecule. We employ a local resonant x-ray pump at the oxygen atom and probe the chemical shifts of the carbon core-electron binding energy. We observe charge redistribution accompanying core-excitation followed by Auger decay, eventually leading to dissociation and hole trapping at one site of the molecule. The presented technique is general in nature with sensitivity to chemical environment changes including transient electronic excited state dynamics. This work provides a route to investigate energy and charge transport processes in more complex systems by tracking selective chemical bond changes on their natural timescale.


Subject(s)
Carbon Monoxide , Diatoms , Humans , Cell Nucleus , Chromosome Aberrations , Electronics
4.
Nanoscale ; 14(3): 617-625, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34985076

ABSTRACT

The stabilization of supported nanoclusters is critical for different applications, including catalysis and plasmonics. Herein we investigate the impact of MoS2 grain boundaries (GBs) on the nucleation and growth of Pt NCs. The optimum atomic structure of the metal clusters is obtained using an adaptive genetic algorithm that employs a hybrid approach based on atomistic force fields and density functional theory. Our findings show that GBs stabilize the NCs up to a cluster size of nearly ten atoms, and with larger clusters having a similar binding to the pristine system. Notably, Pt monomers are found to be attracted to GB cores achieving 60% more stabilization compared to the pristine surface. Furthermore, we show that the nucleation and growth of the metal seeds are facile with low kinetic barriers, which are of similar magnitude to the diffusion barriers of metals on the pristine surface. The findings highlight the need to engineer ultrasmall NCs to take advantage of enhanced stabilization imparted by the GB region, particularly to circumvent sintering behavior for high-temperature applications.

5.
J Chem Inf Model ; 61(12): 5793-5803, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34905348

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) pose a significant hazard because of their widespread industrial uses, environmental persistence, and bioaccumulation. A growing, increasingly diverse inventory of PFAS, including 8163 chemicals, has recently been updated by the U.S. Environmental Protection Agency. However, with the exception of a handful of well-studied examples, little is known about their human toxicity potential because of the substantial resources required for in vivo toxicity experiments. We tackle the problem of expensive in vivo experiments by evaluating multiple machine learning (ML) methods, including random forests, deep neural networks (DNN), graph convolutional networks, and Gaussian processes, for predicting acute toxicity (e.g., median lethal dose, or LD50) of PFAS compounds. To address the scarcity of toxicity information for PFAS, publicly available datasets of oral rat LD50 for all organic compounds are aggregated and used to develop state-of-the-art ML source models for transfer learning. A total of 519 fluorinated compounds containing two or more C-F bonds with known toxicity are used for knowledge transfer to ensembles of the best-performing source model, DNN, to generate the target models for the PFAS domain with access to uncertainty. This study predicts toxicity for PFAS with a defined chemical structure. To further inform prediction confidence, the transfer-learned model is embedded within a SelectiveNet architecture, where the model is allowed to identify regions of prediction with greater confidence and abstain from those with high uncertainty using a calibrated cutoff rate.


Subject(s)
Fluorocarbons , Animals , Fluorocarbons/chemistry , Fluorocarbons/toxicity , Machine Learning , Neural Networks, Computer , Rats , Uncertainty
6.
J Chem Phys ; 155(23): 234111, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34937382

ABSTRACT

A family of coordination complexes of the type [Ru(SO2)(NH3)4X]m+Yn - (m, n = 1 or 2) exhibit optical switching capabilities in their single-crystal states. This striking effect is caused by the light-induced formation of SO2-linkage photoisomers, which are metastable if kept at suitably cool temperatures. We modeled the dark- and light-induced states of these large crystalline complexes via plane-wave (PW)- and molecular-orbital (MO)-based density functional theory (DFT) and time-dependent DFT in order to calculate their structural and optical properties; the calculated results are compared with experimental data. We show that the PW-DFT-based periodic models replicate the structural properties of these complexes more effectively than the MO-DFT-based molecular-fragment models, observing only small deviations in key bond lengths relative to the experimentally derived crystal structures. The periodic models were also found to more effectively simulate trends seen in experimental optical absorption spectra, with optical absorbance and coverage of the visible region increasing with the formation of the photoinduced geometries. The contribution of the metastable photoisomeric species more heavily focuses on the lower-energy end of the spectra. Spectra generated from the molecular-fragment models are limited by the geometry of the fragment used and the number of excited-state roots considered in those calculations. In general, periodic models outperform the molecular-fragment models owing to their ability to better appreciate the periodic phenomena that are present in these crystalline materials as opposed to MO approaches, which are finite methods. We thus demonstrate that PW-DFT-based periodic models should be considered as a more than viable method for simulating the optical and electronic properties of these single-crystal optical switches.

7.
Phys Rev Lett ; 126(15): 156002, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929252

ABSTRACT

Understanding the structure and properties of refractory oxides is critical for high temperature applications. In this work, a combined experimental and simulation approach uses an automated closed loop via an active learner, which is initialized by x-ray and neutron diffraction measurements, and sequentially improves a machine-learning model until the experimentally predetermined phase space is covered. A multiphase potential is generated for a canonical example of the archetypal refractory oxide, HfO_{2}, by drawing a minimum number of training configurations from room temperature to the liquid state at ∼2900 °C. The method significantly reduces model development time and human effort.

8.
Sci Data ; 8(1): 43, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531509

ABSTRACT

We introduce QM7-X, a comprehensive dataset of 42 physicochemical properties for ≈4.2 million equilibrium and non-equilibrium structures of small organic molecules with up to seven non-hydrogen (C, N, O, S, Cl) atoms. To span this fundamentally important region of chemical compound space (CCS), QM7-X includes an exhaustive sampling of (meta-)stable equilibrium structures-comprised of constitutional/structural isomers and stereoisomers, e.g., enantiomers and diastereomers (including cis-/trans- and conformational isomers)-as well as 100 non-equilibrium structural variations thereof to reach a total of ≈4.2 million molecular structures. Computed at the tightly converged quantum-mechanical PBE0+MBD level of theory, QM7-X contains global (molecular) and local (atom-in-a-molecule) properties ranging from ground state quantities (such as atomization energies and dipole moments) to response quantities (such as polarizability tensors and dispersion coefficients). By providing a systematic, extensive, and tightly-converged dataset of quantum-mechanically computed physicochemical properties, we expect that QM7-X will play a critical role in the development of next-generation machine-learning based models for exploring greater swaths of CCS and performing in silico design of molecules with targeted properties.

9.
Sci Data ; 6(1): 307, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804487

ABSTRACT

The ability to auto-generate databases of optical properties holds great prospects in data-driven materials discovery for optoelectronic applications. We present a cognate set of experimental and computational data that describes key features of optical absorption spectra. This includes an auto-generated database of 18,309 records of experimentally determined UV/vis absorption maxima, λmax, and associated extinction coefficients, ϵ, where present. This database was produced using the text-mining toolkit, ChemDataExtractor, on 402,034 scientific documents. High-throughput electronic-structure calculations using fast (simplified Tamm-Dancoff approach) and traditional (time-dependent) density functional theory were executed to predict λmax and oscillation strengths, f (related to ϵ) for a subset of validated compounds. Paired quantities of these computational and experimental data show strong correlations in λmax, f and ϵ, laying the path for reliable in silico calculations of additional optical properties. The total dataset of 8,488 unique compounds and a subset of 5,380 compounds with experimental and computational data, are available in MongoDB, CSV and JSON formats. These can be queried using Python, R, Java, and MATLAB, for data-driven optoelectronic materials discovery.

10.
J Chem Inf Model ; 59(7): 3120-3127, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31145605

ABSTRACT

The molecular electrostatic potential (MEP) generated by quantum chemistry methods and Gaussian functions is evaluated over graphics processing units (GPUs). This implementation is based on full-range Rys polynomials with nodes and weights obtained in each thread of a GPU. For high angular moments, the corresponding integral is solved using a one-dimension vertical recurrence relation. Thus, we computed the MEP with minimal approximations. We show that this implementation is stable and very efficient since the time consumed over GPUs is quite small compared with similar implementations over CPUs. The implementation was done by using CUDA-C programming techniques within the Graphics Processing Units for Atoms and Molecules (GPUAM) project, which has been designed to analyze quantum chemistry fields over heterogeneous computational resources. With this new scalar field GPUAM is a useful application for the quantum chemistry community, in particular for people interested in chemical reactivity analysis.


Subject(s)
Computer Graphics , Software , Static Electricity , Algorithms , Models, Molecular , Molecular Structure
11.
Phys Rev Lett ; 121(14): 146401, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30339426

ABSTRACT

For a class of 2D hybrid organic-inorganic perovskite semiconductors based on π-conjugated organic cations, we predict quantitatively how varying the organic and inorganic component allows control over the nature, energy, and localization of carrier states in a quantum-well-like fashion. Our first-principles predictions, based on large-scale hybrid density-functional theory with spin-orbit coupling, show that the interface between the organic and inorganic parts within a single hybrid can be modulated systematically, enabling us to select between different type-I and type-II energy level alignments. Energy levels, recombination properties, and transport behavior of electrons and holes thus become tunable by choosing specific organic functionalizations and juxtaposing them with suitable inorganic components.

12.
J Comput Chem ; 39(22): 1806-1814, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30141534

ABSTRACT

Integration of Shift-and-Invert Parallel Spectral Transformation (SIPs) eigensolver (as implemented in the SLEPc library) into an ab initio molecular dynamics package, SIESTA, is described. The effectiveness of the code is demonstrated on applications to polyethylene chains, boron nitride sheets, and bulk water clusters. For problems with the same number of orbitals, the performance of the SLEPc eigensolver depends on the sparsity of the matrices involved, favoring reduced dimensional systems such as polyethylene or boron nitride sheets in comparison to bulk systems like water clusters. For all problems investigated, performance of SIESTA-SIPs exceeds the performance of SIESTA with default solver (ScaLAPACK) at the larger number of cores and the larger number of orbitals. A method that improves the load-balance with each iteration in the self-consistency cycle by exploiting the emerging knowledge of the eigenvalue spectrum is demonstrated. © 2018 Wiley Periodicals, Inc.

13.
J Chem Phys ; 148(24): 241701, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29960303

ABSTRACT

We present Genarris, a Python package that performs configuration space screening for molecular crystals of rigid molecules by random sampling with physical constraints. For fast energy evaluations, Genarris employs a Harris approximation, whereby the total density of a molecular crystal is constructed via superposition of single molecule densities. Dispersion-inclusive density functional theory is then used for the Harris density without performing a self-consistency cycle. Genarris uses machine learning for clustering, based on a relative coordinate descriptor developed specifically for molecular crystals, which is shown to be robust in identifying packing motif similarity. In addition to random structure generation, Genarris offers three workflows based on different sequences of successive clustering and selection steps: the "Rigorous" workflow is an exhaustive exploration of the potential energy landscape, the "Energy" workflow produces a set of low energy structures, and the "Diverse" workflow produces a maximally diverse set of structures. The latter is recommended for generating initial populations for genetic algorithms. Here, the implementation of Genarris is reported and its application is demonstrated for three test cases.

14.
J Phys Chem B ; 122(32): 7915-7928, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30044622

ABSTRACT

A coarse-grained model for simulating structural properties of double-stranded RNA is developed with parameters obtained from quantum-mechanical calculations. This model follows previous parametrization for double-stranded DNA, which is based on mapping the all-atom picture to a coarse-grained four-bead scheme. Chemical and structural differences between RNA and DNA have been taken into account for the model development. The parametrization is based on simulations using density functional theory (DFT) on separate units of the RNA molecule without implementing experimental data. The total energy is decomposed into four terms of physical significance: hydrogen bonding interaction, stacking interactions, backbone interactions, and electrostatic interactions. The first three interactions are treated within DFT, whereas the last one is included within a mean field approximation. Our double-stranded RNA coarse-grained model predicts stable helical structures for RNA. Other characteristics, such as structural or mechanical properties are reproduced with a very good accuracy. The development of the coarse-grained model for RNA allows extending the spatial and temporal length scales accessed by computer simulations and being able to model RNA-related biophysical processes, as well as novel RNA nanostructures.


Subject(s)
Density Functional Theory , RNA, Double-Stranded/chemistry , Base Pairing , Hydrogen Bonding , Models, Molecular , Nucleic Acid Conformation , Static Electricity , Thermodynamics
15.
J Chem Theory Comput ; 14(4): 2246-2264, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29481740

ABSTRACT

We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.

16.
Materials (Basel) ; 10(11)2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29125579

ABSTRACT

Understanding the atomic structure of amorphous solids is important in predicting and tuning their macroscopic behavior. Here, we use a combination of high-energy X-ray diffraction, neutron diffraction, and molecular dynamics simulations to benchmark the atomic interactions in the high temperature stable liquid and low-density amorphous solid states of hafnia. The diffraction results reveal an average Hf-O coordination number of ~7 exists in both the liquid and amorphous nanoparticle forms studied. The measured pair distribution functions are compared to those generated from several simulation models in the literature. We have also performed ab initio and classical molecular dynamics simulations that show density has a strong effect on the polyhedral connectivity. The liquid shows a broad distribution of Hf-Hf interactions, while the formation of low-density amorphous nanoclusters can reproduce the sharp split peak in the Hf-Hf partial pair distribution function observed in experiment. The agglomeration of amorphous nanoparticles condensed from the gas phase is associated with the formation of both edge-sharing and corner-sharing HfO6,7 polyhedra resembling that observed in the monoclinic phase.

17.
ACS Appl Mater Interfaces ; 9(31): 25952-25961, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28692246

ABSTRACT

Donor-π-acceptor dyes containing thiophenyl π-conjugated units and cyanoacrylate acceptor groups are among the best-performing organic chromophores used in dye-sensitized solar cell (DSC) applications. Yet, the molecular origins of their high photovoltaic output have remained unclear until now. This synchrotron-based X-ray diffraction study elucidates these origins for the high-performance thiophenylcyanoacrylate-based dye MK-2 (7.7% DSC device efficiency) and its molecular building block, MK-44. The crystal structures of MK-2 and MK-44 are both determined, while a high-resolution charge-density mapping of the smaller molecule was also possible, enabling the nature of its bonding to be detailed. A strong S···C≡N intramolecular interaction is discovered, which bears a bond critical point, thus proving that this interaction should be formally classified as a chemical bond. A topological analysis of the π-conjugated portion of MK-44 shows that this S···C≡N bonding underpins the highly efficient intramolecular charge transfer (ICT) in thiophenylcyanoacrylate dyes. This manifests as two bipartite ICT pathways bearing carboxylate and nitrile end points. In turn, these pathways dictate a preferred COO/CN anchoring mode for the dye as it adsorbs onto TiO2 surfaces, to form the dye···TiO2 interface that constitutes the DSC working electrode. These results corroborate a recent proposal that all cyanoacrylate groups anchor onto TiO2 in this COO/CN binding configuration. Conformational analysis of the MK-44 and MK-2 crystal structures reveals that this S···C≡N bonding will persist in MK-2. Accordingly, this newly discovered bond affords a rational explanation for the attractive photovoltaic properties of MK-2. More generally, this study provides the first unequivocal evidence for an S···C≡N interaction, confirming previous speculative assignments of such interactions in other compounds.

18.
Chem Sci ; 8(4): 2597-2609, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28553494

ABSTRACT

Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. We propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower than most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. Much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs.

19.
Chem Commun (Camb) ; 53(18): 2725-2728, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28198893

ABSTRACT

We report the use of time-resolved X-ray absorption spectroscopy in the ns-µs time scale to track the light induced two electron transfer processes in a multi-component photocatalytic system, consisting of [Ru(bpy)3]2+/ a diiron(iii,iii) model/triethylamine. EXAFS analysis with DFT calculations confirms the structural configurations of the diiron(iii,iii) and reduced diiron(ii,ii) states.

20.
J Chem Phys ; 138(7): 074101, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23444991

ABSTRACT

A direct method (D-ΔMBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The ΔMBPT(2) method is defined as the correlated extension of the ΔHF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-ΔMBPT(2) applicable not only to single excited but also higher excited states. We show the relationship of the D-ΔMBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-ΔMBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the ΔMBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from equation of motion coupled cluster singles and doubles increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the ΔMBPT(2) values. Most importantly, relaxation beyond the Hartree-Fock level is significant and needs to be included in future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...