Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Transl Res ; 269: 47-63, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38395389

ABSTRACT

Fabry disease (FD) is a X-linked rare lysosomal storage disorder caused by deficient α-galactosidase A (α-GalA) activity. Early diagnosis and the prediction of disease course are complicated by the clinical heterogeneity of FD, as well as by the frequently inconclusive biochemical and genetic test results that do not correlate with clinical course. We sought to identify potential biomarkers of FD to better understand the underlying pathophysiology and clinical phenotypes. We compared the plasma proteomes of 50 FD patients and 50 matched healthy controls using DDA and SWATH-MS. The >30 proteins that were differentially expressed between the 2 groups included proteins implicated in processes such as inflammation, heme and haemoglobin metabolism, oxidative stress, coagulation, complement cascade, glucose and lipid metabolism, and glycocalyx formation. Stratification by sex revealed that certain proteins were differentially expressed in a sex-dependent manner. Apolipoprotein A-IV was upregulated in FD patients with complications, especially those with chronic kidney disease, and apolipoprotein C-III and fetuin-A were identified as possible markers of FD with left ventricular hypertrophy. All these proteins had a greater capacity to identify the presence of complications in FD patients than lyso-GB3, with apolipoprotein A-IV standing out as being more sensitive and effective in differentiating the presence and absence of chronic kidney disease in FD patients than renal markers such as creatinine, glomerular filtration rate and microalbuminuria. Identification of these potential biomarkers can help further our understanding of the pathophysiological processes that underlie the heterogeneous clinical manifestations associated with FD.


Subject(s)
Biomarkers , Fabry Disease , Phenotype , Proteomics , Humans , Fabry Disease/blood , Male , Female , Biomarkers/blood , Adult , Middle Aged , Case-Control Studies , Sex Characteristics , Young Adult , Proteome/metabolism
2.
Orphanet J Rare Dis ; 17(1): 105, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246208

ABSTRACT

BACKGROUND: Diagnosis of mature-onset diabetes of the young (MODY), a non-autoimmune monogenic form of diabetes mellitus, is confirmed by genetic testing. However, a positive genetic diagnosis is achieved in only around 50% of patients with clinical characteristics of this disease. RESULTS: We evaluated the diagnostic utility of transcriptomic analysis in patients with clinical suspicion of MODY but a negative genetic diagnosis. Using Nanostring nCounter technology, we conducted transcriptomic analysis of 19 MODY-associated genes in peripheral blood samples from 19 patients and 8 healthy controls. Normalized gene expression was compared between patients and controls and correlated with each patient's biochemical and clinical variables. Z-scores were calculated to identify significant changes in gene expression in patients versus controls. Only 7 of the genes analyzed were detected in peripheral blood. HADH expression was significantly lower in patients versus controls. Among patients with suspected MODY, GLIS3 expression was higher in obese versus normal-weight patients, and in patients aged < 25 versus > 25 years at diabetes onset. Significant alteration with respect to controls of any gene was observed in 57.9% of patients. CONCLUSIONS: Although blood does not seem to be a suitable sample for transcriptomic analysis of patients with suspected MODY, in our study, we detected expression alterations in some of the genes studied in almost 58% of patients. That opens the door for future studies that can clarify the molecular cause of the clinic of these patients and thus be able to maintain a more specific follow-up and treatment in each case.


Subject(s)
Diabetes Mellitus, Type 2 , Transcriptome , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Gene Expression Profiling , Genetic Testing , Humans , Mutation , Transcriptome/genetics
3.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948281

ABSTRACT

Mitochondrial functional integrity depends on protein and lipid homeostasis in the mitochondrial membranes and disturbances in their accumulation can cause disease. AGK, a mitochondrial acylglycerol kinase, is not only involved in lipid signaling but is also a component of the TIM22 complex in the inner mitochondrial membrane, which mediates the import of a subset of membrane proteins. AGK mutations can alter both phospholipid metabolism and mitochondrial protein biogenesis, contributing to the pathogenesis of Sengers syndrome. We describe the case of an infant carrying a novel homozygous AGK variant, c.518+1G>A, who was born with congenital cataracts, pielic ectasia, critical congenital dilated myocardiopathy, and hyperlactacidemia and died 20 h after birth. Using the patient's DNA, we performed targeted sequencing of 314 nuclear genes encoding respiratory chain complex subunits and proteins implicated in mitochondrial oxidative phosphorylation (OXPHOS). A decrease of 96-bp in the length of the AGK cDNA sequence was detected. Decreases in the oxygen consumption rate (OCR) and the OCR:ECAR (extracellular acidification rate) ratio in the patient's fibroblasts indicated reduced electron flow through the respiratory chain, and spectrophotometry revealed decreased activity of OXPHOS complexes I and V. We demonstrate a clear defect in mitochondrial function in the patient's fibroblasts and describe the possible molecular mechanism underlying the pathogenicity of this novel AGK variant. Experimental validation using in vitro analysis allowed an accurate characterization of the disease-causing variant.


Subject(s)
Cardiomyopathies/genetics , Cataract/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Cardiomyopathies/mortality , Cataract/mortality , Fibroblasts/metabolism , Humans , Infant, Newborn , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/physiology , Mutation , Oxidative Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Transport/genetics , RNA Splicing/genetics
4.
Genes (Basel) ; 12(8)2021 08 19.
Article in English | MEDLINE | ID: mdl-34440436

ABSTRACT

Next-generation sequencing (NGS) technologies have been proposed as a first-line test for the diagnosis of inborn errors of metabolism (IEM), a group of genetically heterogeneous disorders with overlapping or nonspecific phenotypes. Over a 3-year period, we prospectively analyzed 311 pediatric patients with a suspected IEM using four targeted gene panels. The rate of positive diagnosis was 61.86% for intermediary metabolism defects, 32.84% for complex molecular defects, 19% for hypoglycemic/hyperglycemic events, and 17% for mitochondrial diseases, and a conclusive molecular diagnosis was established in 2-4 weeks. Forty-one patients for whom negative results were obtained with the mitochondrial diseases panel underwent subsequent analyses using the NeuroSeq panel, which groups all genes from the individual panels together with genes associated with neurological disorders (1870 genes in total). This achieved a diagnostic rate of 32%. We next evaluated the utility of a tool, Phenomizer, for differential diagnosis, and established a correlation between phenotype and molecular findings in 39.3% of patients. Finally, we evaluated the mutational architecture of the genes analyzed by determining z-scores, loss-of-function observed/expected upper bound fraction (LOEUF), and haploinsufficiency (HI) scores. In summary, targeted gene panels for specific groups of IEMs enabled rapid and effective diagnosis, which is critical for the therapeutic management of IEM patients.


Subject(s)
Hyperglycemia/diagnosis , Hypoglycemia/diagnosis , Metabolism, Inborn Errors/diagnosis , Mitochondrial Diseases/diagnosis , Adolescent , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing/standards , Humans , Hyperglycemia/genetics , Hyperglycemia/pathology , Hypoglycemia/genetics , Hypoglycemia/pathology , Infant , Infant, Newborn , Male , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Molecular Diagnostic Techniques/standards , Mutation
5.
Cytotherapy ; 23(5): 399-410, 2021 05.
Article in English | MEDLINE | ID: mdl-33727013

ABSTRACT

With the redefinition of osteoarthritis (OA) and the understanding that the joint behaves as an organ, OA is now considered a systemic illness with a low grade of chronic inflammation. Mitochondrial dysfunction is well documented in OA and has the capacity to alter chondrocyte and synoviocyte function. Transmitochondrial cybrids are suggested as a useful cellular model to study mitochondrial biology in vitro, as they carry different mitochondrial variants with the same nuclear background. The aim of this work was to study mitochondrial and metabolic function of cybrids with mitochondrial DNA from healthy (N) and OA donors. In this work, the authors demonstrate that cybrids from OA patients behave differently from cybrids from N donors in several mitochondrial parameters. Furthermore, OA cybrids behave similarly to OA chondrocytes. These results enhance our understanding of the role of mitochondria in the degeneration process of OA and present cybrids as a useful model to study OA pathogenesis.


Subject(s)
DNA, Mitochondrial , Osteoarthritis , Chondrocytes , DNA, Mitochondrial/genetics , Humans , Mitochondria/genetics , Osteoarthritis/genetics
6.
Cells ; 9(4)2020 03 27.
Article in English | MEDLINE | ID: mdl-32230786

ABSTRACT

Osteoarthritis (OA) is the most frequent joint disease; however, the etiopathogenesis is still unclear. Chondrocytes rely primarily on glycolysis to meet cellular energy demand, but studies implicate impaired mitochondrial function in OA pathogenesis. The relationship between mitochondrial dysfunction and OA has been established. The aim of the study was to examine the differences in glucose and Fatty Acids (FA) metabolism, especially with regards to metabolic flexibility, in cybrids from healthy (N) or OA donors. Glucose and FA metabolism were studied using D-[14C(U)]glucose and [1-14C]oleic acid, respectively. There were no differences in glucose metabolism among the cybrids. Osteoarthritis cybrids had lower acid-soluble metabolites, reflecting incomplete FA ß-oxidation but higher incorporation of oleic acid into triacylglycerol. Co-incubation with glucose and oleic acid showed that N but not OA cybrids increased their glucose metabolism. When treating with the mitochondrial inhibitor etomoxir, N cybrids still maintained higher glucose oxidation. Furthermore, OA cybrids had higher oxidative stress response. Combined, this indicated that N cybrids had higher metabolic flexibility than OA cybrids. Healthy donors maintained the glycolytic phenotype, whereas OA donors showed a preference towards oleic acid metabolism. Interestingly, the results indicated that cybrids from OA patients had mitochondrial impairments and reduced metabolic flexibility compared to N cybrids.


Subject(s)
Mitochondria/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Cell Line , Fatty Acids/metabolism , Glucose/metabolism , Haplotypes/genetics , Humans , Lipid Droplets/metabolism , Lipid Metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Superoxides/metabolism
7.
Arthritis Rheumatol ; 71(7): 1191-1200, 2019 07.
Article in English | MEDLINE | ID: mdl-30747498

ABSTRACT

OBJECTIVE: To analyze the influence of mitochondrial genome variation on the DNA methylome of articular cartilage. METHODS: DNA methylation profiling was performed using data deposited in the NCBI Gene Expression Omnibus database (accession no. GSE43269). Data were obtained for 14 cartilage samples from subjects with haplogroup J and 20 cartilage samples from subjects with haplogroup H. Subsequent validation was performed in an independent subset of 7 subjects with haplogroup J and 9 with haplogroup H by RNA-seq. Correlated genes were validated by real-time polymerase chain reaction in an independent cohort of 12 subjects with haplogroup J and 12 with haplogroup H. Appropriate analyses were performed using R Bioconductor and qBasePlus software, and gene ontology analysis was conducted using DAVID version 6.8. RESULTS: DNA methylation profiling revealed 538 differentially methylated loci, while whole-transcriptome profiling identified 2,384 differentially expressed genes, between cartilage samples from subjects with haplogroup H and those with haplogroup J. Seventeen genes showed an inverse correlation between methylation and expression. In terms of gene ontology, differences in correlations between methylation and expression were also detected between cartilage from subjects with haplogroup H and those with haplogroup J, highlighting a significantly enhanced apoptotic process in cartilage from subjects with haplogroup H (P = 0.007 for methylation and P = 0.019 for expression) and repressed apoptotic process in cartilage from subjects with haplogroup J (P = 0.021 for methylation), as well as a significant enrichment of genes related to metabolic processes (P = 1.93 × 10-4 for methylation and P = 6.79 x 10-4 for expression) and regulation of gene expression (P = 0.012 for methylation) in cartilage from subjects with haplogroup H, and to developmental processes (P = 0.015 for methylation and P = 8.25 x 10-12 for expression) in cartilage from subjects with haplogroup J. CONCLUSION: Mitochondrial DNA variation differentially associates with the methylation status of articular cartilage by acting on key mechanisms involved in osteoarthritis, such as apoptosis and metabolic and developmental processes.


Subject(s)
Apoptosis/genetics , Cartilage, Articular/metabolism , DNA, Mitochondrial/genetics , Epigenome , Osteoarthritis, Knee/genetics , Aged , Aged, 80 and over , Case-Control Studies , DNA Methylation , Female , Gene Expression Profiling , Gene Ontology , Haplotypes/genetics , Humans , Male , Middle Aged , Osteoarthritis, Knee/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Transcriptome
8.
Rheumatology (Oxford) ; 56(2): 263-270, 2017 02.
Article in English | MEDLINE | ID: mdl-27864563

ABSTRACT

OBJECTIVE: To conduct a replication study and meta-analysis involving the study of mtDNA variants in the radiographic progression of OA in different cohorts worldwide, including Cohort Hip and Cohort Knee (CHECK), the OA Initiative and a cohort from Spain. METHODS: The influence of the haplogroups in the rate of radiographic progression at 96 months in 431 subjects from CHECK was assessed in terms of Kellgren and Lawrence (KL) grade. Progression was defined as a change from KL ⩾ 1 at baseline to any higher grade during the follow-up. Extended Cox proportional hazard models were used to analyse the influence of mtDNA variants in the rate of radiographic knee OA progression. A subsequent meta-analysis of 1603 subjects following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted to combine the data of individual studies. A sensitivity analysis was performed to validate the stability of the results. RESULTS: CHECK subjects carrying the haplogroup T showed the lowest rate of radiographic knee OA progression [hazard ratio (HR) 0.645 (95% CI 0.419, 0.978); P < 0.05]. When pooled, subjects within the superhaplogroup JT showed the same trend [HR 0.707 (95% CI 0.501, 0.965); P < 0.05]. BMI [HR 1.046 (95% CI 1.018, 1.073); P < 0.05] and bilateral OA [HR 2.266 (95% CI 1.733, 2.954); P < 0.05] at baseline are risk factors for radiographic knee OA progression as well. In the meta-analysis there was a reduced rate of radiographic progression in subjects with haplogroup T [HR 0.612 (95% CI 0.454, 0.824); P = 0.001] or in the superhaplogroup JT [HR 0.765 (95% CI 0.624, 0.938); P = 0.009]. Sensitivity analysis revealed that the results were robust. CONCLUSION: The mtDNA variants in the superhaplogroup JT associate with a reduced rate of radiographic OA progression. The mtDNA polymorphisms in the superhaplogroup JT emerge as potential complementary genetic biomarkers for disease progression.


Subject(s)
DNA, Mitochondrial/genetics , Osteoarthritis, Knee/genetics , Aged , Body Mass Index , Cohort Studies , Disease Progression , Female , Haplotypes , Humans , Longitudinal Studies , Male , Middle Aged , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/physiopathology , Polymorphism, Genetic , Proportional Hazards Models , Prospective Studies , Radiography , Reproducibility of Results , Risk Factors , Spain
9.
Ann Rheum Dis ; 76(6): 1114-1122, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27919866

ABSTRACT

OBJECTIVE: To evaluate the influence of the mitochondrial DNA (mtDNA) haplogroups in the risk of incident knee osteoarthritis (OA) and to explain the functional consequences of this association to identify potential diagnostic biomarkers and therapeutic targets. METHODS: Two prospective cohorts contributed participants. The osteoarthritis initiative (OAI) included 2579 subjects of the incidence subcohort, and the cohort hip and cohort knee (CHECK) included 635, both with 8-year follow-up. The analysis included the association of mtDNA haplogroups with the rate of incident knee OA in subjects from both cohorts followed by a subsequent meta-analysis. Transmitochondrial cybrids harbouring haplogroup J or H were constructed to detect differences between them in relation to physiological features including specific mitochondrial metabolic parameters, reactive oxygen species production, oxidative stress and apoptosis. RESULTS: Compared with H, the haplogroup J associates with decreased risk of incident knee OA in subjects from OAI (HR=0.680; 95% CI 0.470 to 0.968; p<0.05) and CHECK (HR=0.728; 95% CI 0.469 to 0.998; p<0.05). The subsequent meta-analysis including 3214 cases showed that the haplogroup J associates with a lower risk of incident knee OA (HR=0.702; 95% CI 0.541 to 0.912; p=0.008). J cybrids show a lower free radical production, higher cell survival under oxidative stress conditions, lower grade of apoptosis as well as lower expression of the mitochondrially related pro-apoptotic gene BCL2 binding component 3 (BBC3). In addition, J cybrids also show a lower mitochondrial respiration and glycolysis leading to decreased ATP production. CONCLUSIONS: The physiological effects of the haplogroup J are beneficial to have a lower rate of incident knee OA over time. Potential drugs to treat OA could focus on emulating the mitochondrial behaviour of this haplogroup.


Subject(s)
DNA, Mitochondrial , Osteoarthritis, Knee/epidemiology , Osteoarthritis, Knee/genetics , Apoptosis/genetics , Biomarkers , DNA, Mitochondrial/metabolism , Haplotypes , Humans , Incidence , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
10.
Ann Rheum Dis ; 73(4): 668-77, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23505229

ABSTRACT

OBJECTIVE: Alterations in DNA methylation patterns have been found to correlate with several diseases including osteoarthritis (OA). The aim of this study was to identify, for the first time, the genome-wide DNA methylation profiles of human articular chondrocytes from OA cartilage and healthy control cartilage samples. METHODS: DNA methylation profiling was performed using Illumina Infinium HumanMethylation27 in 25 patients with OA and 20 healthy controls. Subsequent validation was performed by genome-wide expression analysis using the Affymetrix Human Gene 1.1 ST array in an independent cohort of 24 patients with OA. Finally, the most consistent genes in both assays were amplified by quantitative reverse transcriptase PCR in a validation cohort of 48 patients using microfluidic real-time quantitative PCR. Appropriate bioinformatics analyses were carried out using R bioconductor software packages and qBase plus software from Biogazelle. RESULTS: We found 91 differentially methylated (DM) probes, which permitted us to separate patients with OA from healthy controls. Among the patients with OA, we detected 1357 DM probes that identified a tight cluster of seven patients who were different from the rest. This cluster was also identified by genome-wide expression in which 450 genes were differentially expressed. Further validation of the most consistent genes in an independent cohort of patients with OA permitted us to identify this cluster, which was characterised by increased inflammatory processes. CONCLUSIONS: We were able to identify a tight subgroup of patients with OA, characterised by an increased inflammatory response that could be regulated by epigenetics. The identification and isolation of this subgroup may be critical for the development of effective treatment and disease prevention.


Subject(s)
Cartilage, Articular/metabolism , Chondrocytes/metabolism , DNA Methylation , Osteoarthritis, Knee/genetics , Aged , Aged, 80 and over , Case-Control Studies , Cluster Analysis , Female , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Genome-Wide Association Study/methods , Humans , Male , Middle Aged , Osteoarthritis, Knee/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...