Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998352

ABSTRACT

Escalating global surface temperatures are highlighting the urgent need for energy-saving solutions. Phase-change materials (PCMs) have emerged as a promising avenue for enhancing thermal comfort in the construction sector. This study assessed the impact of incorporating PCMs ranging from 1% to 10% by mass into composite Portland cement partially replaced by fly ash (FA) and nanosilica particles (NS). Mechanical and electrochemical techniques were utilized to evaluate composite cements. The results indicate that the presence of PCMs delayed cement hydration, acting as a filler without chemically interacting within the composite. The combination of FA and PCMs reduced compressive strength at early ages, while thermal conductivity decreased after 90 days due to the melting point and the latent heat of PCMs. Samples with FA and NS showed a significant reduction in the CO2 penetration, attributed to their pozzolanic and microfiller effects, as well as reduced water absorption due to the non-absorptive nature of PCMs. Nitrogen physisorption confirmed structural changes in the cement matrix. Additionally, electrical resistivity and thermal behavior assessments revealed that PCM-containing samples could reduce temperatures by an average of 4 °C. This suggested that PCMs could be a viable alternative for materials with thermal insulation capacity, thereby contributing to energy efficiency in the construction sector.

2.
Data Brief ; 28: 104855, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31871995

ABSTRACT

Biochars are emerging eco-friendly products showing outstanding properties in areas such as carbon sequestration, soil amendment, bioremediation, biocomposites, and bioenergy. These interesting materials can be synthesized from a wide variety of waste-derived sources, including lignocellulosic biomass wastes, manure and sewage sludge. In this work, abundant data on biochars produced from coconut-shell wastes obtained from the Colombian Pacific Coast are presented. Biochar synthesis was performed varying the temperature (in the range: 280 °C-420 °C) and O2 feeding (in the range: 0-5% v/v) in the pyrolysis reaction. Production yields and some biochar properties such as particle size, Zeta Potential, elemental content (C, N, Al, B, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Ti, Zn), BET surface area, FT-IR spectrum, XRD spectrum, and SEM morphology are presented. This data set is a comprehensive resource to gain a further understanding of biochars, and is a valuable tool for addressing the strategic exploitation of the multiple benefits they have.

3.
Carbohydr Polym ; 210: 85-91, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30732784

ABSTRACT

Cellulose, the most abundant biopolymer on earth, is produced at different ratios by all land plants. Since the morphology and crystallinity of cellulose are key factors involved in its enzymatic hydrolysis, in the present work, we tackled the study of the effects of such variables on the nanocellulose conversion into glucose. Cellulase from Trichoderma sp at 37 °C was used to produce glucose, the best results were found for the cellulose nanoplatelets (S-CNP) after 60 h of hydrolysis, which afforded a conversion of 47% to glucose, in contrast to 15% for the non-purified sample (W-CP) and 22% for microcrystalline cellulose (MCC20) used as control. The X-ray diffractogram recorded on the samples showed an initial crystallinity index of 45%, 54% and 72% for W-CNP, S-CNP and MCC20, respectively. Also, we showed that after 24 h of hydrolysis, long cellulose nanofibrils (∅ ≈ 30 nm) were found as a residue.


Subject(s)
Cellulase/metabolism , Cellulose/chemistry , Nanostructures/chemistry , Hydrolysis , Temperature , Trichoderma/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...