Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35161907

ABSTRACT

The morphological analysis of patterns in dried droplets has allowed the generation of efficient techniques for the detection of molecules of medical interest. However, the effectiveness of this method to reveal the coexistence of macromolecules of the same species, but different conformational states, is still unknown. To address this problem, we present an experimental study on pattern formation in dried droplets of bovine serum albumin (BSA), in folded and unfolded conformational states, in saline solution (NaCl). Folded proteins produce a well-defined coffee ring and crystal patterns all over the dry droplet. Depending on the NaCl concentration, the crystals can be small, large, elongated, entangled, or dense. Optical microscopy reveals that the relative concentration of unfolded proteins determines the morphological characteristics of deposits. At a low relative concentration of unfolded proteins (above 2%), small amorphous aggregates emerge in the deposits, while at high concentrations (above 16%), the "eye-like pattern", a large aggregate surrounded by a uniform coating, is produced. The radial intensity profile, the mean pixel intensity, and the entropy make it possible to characterize the patterns in dried droplets. We prove that it is possible to achieve 100% accuracy in identifying 4% of unfolded BSA contained in a protein solution.


Subject(s)
Serum Albumin, Bovine , Sodium Chloride
2.
Colloids Surf B Biointerfaces ; 203: 111763, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33865091

ABSTRACT

Rapid diagnosis provides better clinical management of patients, helps control possible outbreaks, and increases survival. The study of deposits produced by the evaporation of droplets is a useful tool in the diagnosis of some health problems. With the aim to improve diagnostic time in clinical practice where we use the evaporation of droplets, we explored the effects of substrate temperature on pattern formation of dried droplets in globular protein solutions. Three deposit groups were observed: "functional" patterns (from 25 to 37 ∘C), "transition" patterns (from 44 to 50 ∘C), and "eye" patterns (from 58 to 63 ∘C). The dried droplets of the first two groups show a ring structure ("coffee-ring") that confines a great diversity of aggregates such as needle-like structures, tiny blade-shape crystals, highly symmetrical crystallization patterns, and amorphous salt aggregates. In contrast, the "eye" patterns are deposits with a large inner aggregate surrounded by a coffee ring, and they can appear from the evaporation of droplets in protein binary mixtures and blood serum. Interestingly, the unfolding proteins correlates with the formation of "eye" patterns. We measured stain diameter, "coffee-ring" thickness, radial density profile, and entropy computed by GLCM-statistics to quantify the structural differences among deposit groups. We found that "functional" patterns are structurally indistinguishable among them, but they are clearly different from elements of the other deposit groups. An exponential decay function describes pattern formation time as a function of substrate temperature, which is independent from protein concentration. Patterns formation at 32 ∘C takes place up to 63% less time and preserves the structural characteristics of dried droplets in proteins formed at room temperature. Therefore, we argue that droplet evaporation at this substrate temperature could be an excellent candidate to make a more efficient diagnosis based on droplet evaporation of biofluids.


Subject(s)
Proteins , Sodium Chloride , Humans , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...