Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 206: 90-102, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34973996

ABSTRACT

The venom of scorpions is a mixture of components that constitute a source of bioactive molecules. The venom of the scorpion Centruroides tecomanus contains peptides toxic to insects, however, to date no toxin responsible for this activity has yet been isolated and fully characterized. This communication describes two new peptides Ct-IT1 and Ct-IT2 purified from this scorpion. Both peptides contain 63 amino acids with molecular weight 6857.85 for Ct-IT1 and 6987.77 Da for Ct-IT2. The soluble venom was separated using chromatographic techniques of molecular size exclusion, cationic exchange, and reverse phase chromatography, allowing the identification of at least 99 components of which in 53 the insecticidal activity was evaluated. The LD50 determined for Ct-IT1 is 3.81 µg/100 mg of cricket weight, but low amounts of peptides (0.8 µg of peptide) already cause paralysis in crickets. The relative abundance of these two peptides in the venom is 2.1% for Ct-IT1 and 1% for Ct-IT2. The molecular masses and N-terminal sequences of both insecticidal toxins were determined by mass spectrometry and Edman degradation. The primary structure of both toxins was compared with other known peptides isolated from other scorpion venoms. The analysis of the sequence alignments revealed the position of a highly conserved amino acid residue, Gly39, exclusively present in anti-insect selective depressant ß-toxins (DBTXs), which in Ct-IT1 and Ct-IT2 is at position Gly40. Similarly, a three-dimensional structure of this toxins was obtained by homology modeling and compared to the structure of known insect toxins of scorpions. An important similarity of the cavity formed by the trapping apparatus region of the depressant toxin LqhIT2, isolated from the scorpion Leiurus quinquestriatus hebraeus, was found in the toxins described here. These results indicate that Ct-IT1 and Ct-IT2 toxins have a high potential to be evaluated on pests that affect economically important crops to eventually consider them as a potential biological control method.


Subject(s)
Insecticides , Scorpion Venoms , Amino Acid Sequence , Animals , Peptides , Scorpions
2.
Toxicon ; 118: 95-103, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27130039

ABSTRACT

Centruroides tecomanus is a medically important scorpion of the state of Colima (Mexico). This communication reports the identification of venom components of this scorpion with biological activity over insects/crickets (Acheta domestica), crustaceans/fresh water shrimps (Cambarellus montezumae), and mammalians/mice (Mus musculus, strain CD1). It also describes the pharmacological effects on cell lines in culture (L5178Y cells, HeLa cells, HuTu cells and Jurkat E6-1 cells), as well as on several types of bacteria (see below). The soluble venom of this scorpion was fractionated by high-performance liquid chromatography (HPLC) and collected separately in twelve independent fractions collected over 60 min run (5 min time apart each other). The HPLC components of fraction VII were lethal to all three species used for assay. The IVth fraction had a toxic effect on freshwater shrimps. In this species, fractions VI, VII and VIII were all lethal. For crickets, fractions V and VI were toxic and fraction VII was lethal. In mouse, the lethal components were found in fraction VII, whereas fraction VIII was toxic, but not lethal, at the doses assayed. The molecular weight of peptides from the various group of fractions were identified by mass spectrometry determination. Components lethal to mice showed molecular weights from 7013 to 7487 Da. Two peptides were obtained in homogeneous form and shown to be lethal to the three species of animal used for assay. The soluble venom tested on L5178Y cell line survival was shown to be cytotoxic, at 10-100 µg/mL concentration, when compared to control murine splenocytes (p = 0.007). The soluble venom applied to Hela, Hutu and Jurkat cell lines did not show cytotoxic effects at these concentrations. On the contrary, it seems to have a proliferative effect. However the HPLC fractions I, III, VI and XII do have a cytotoxic effect on Jurkat E06-1 cells in culture at 200 µg/mL concentration. The antimicrobial activity of the venom fractions on Staphylococcus aureus (gram-positive), Escherichia coli, Pseudomonas aeruginosa y Salmonella spp (gram-negative) was measured, using the liquid inhibition growth system. The four strains of bacteria used were susceptible to fractions III and IV, affecting all four bacterial strains at concentrations below 5 µg/mL.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Apoptosis/drug effects , Drug Discovery , Insecticides/isolation & purification , Scorpion Venoms/chemistry , Amino Acid Sequence , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Arthropod Proteins/chemistry , Arthropod Proteins/isolation & purification , Arthropod Proteins/pharmacology , Arthropod Proteins/toxicity , Astacoidea/drug effects , Astacoidea/growth & development , Cell Line, Tumor , Cells, Cultured , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gryllidae , Humans , Injections, Intraperitoneal , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/toxicity , Mexico , Mice , Microbial Sensitivity Tests , Scorpion Venoms/administration & dosage , Scorpion Venoms/toxicity , Scorpions/growth & development , Spleen/cytology , Spleen/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...