Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoporos Int ; 16(12): 1633-40, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15827868

ABSTRACT

The genes coding for estrogen receptor-alpha (ER-alpha) and androgen receptors (AR) are potential candidates for the regulation of bone mass and turnover, which may contribute to both the achievement of peak bone mass and bone loss after completion of growth. The present study was aimed at elucidating the role of two restriction fragment lengths (XbaI and PvuII) polymorphisms of the ER gene and the CAG repeat polymorphism of the AR gene as determinants of peak bone mass in men; special attention was paid to the interaction between serum free estradiol (E2) levels and the XbaI and PvuII genotypes. A cross-sectional study, with data on lifestyle factors collected retrospectively, was performed in 234 young men, aged 18.3 to 20.6 years. Of the men, 184 were recruits of the Finnish Army and 50 were men of similar age who had postponed their military service for reasons not related to health. Bone mineral content (BMC), density (BMD) and scan area were measured in the lumbar spine and upper femur by dual-energy X-ray absorptiometry (DXA). The bone turnover rate was assessed by measuring serum type I procollagen aminoterminal propeptide (PINP) and tartrate-resistant acid phosphatase 5b (TRACP5b) as well as urinary excretion of type I collagen aminoterminal telopeptide (NTX). After adjusting for age, height, weight, exercise, smoking, calcium and alcohol intake, BMC, scan area and BMD at all measurement sites were similar for the different XbaI and PvuII genotypes of the ER and independent of the number of the CAG repeats of the AR gene. No association was found between free E2 levels and bone parameters among any genotype group of the XbaI and PvuII polymorphisms. Except for urinary NTX, which showed a tendency to higher values for the xx (P=0.08) and pp (P=0.10) genotypes of the ER, bone turnover markers were not related to the genotypes studied. Our study does not support the view that the XbaI and PvuII polymorphisms of the ER gene and the CAG polymorphism of the AR gene would have a substantial impact on the development of peak bone mass in young Finnish men.


Subject(s)
Bone and Bones/physiology , Polymorphism, Genetic/genetics , Receptors, Androgen/genetics , Receptors, Estrogen/genetics , Acid Phosphatase/blood , Adolescent , Adult , Biomarkers/blood , Bone Density/physiology , Collagen/urine , Cross-Sectional Studies , Estradiol/blood , Femur , Genotype , Humans , Isoenzymes/blood , Life Style , Lumbar Vertebrae , Male , Military Personnel , Peptide Fragments/blood , Polymorphism, Restriction Fragment Length , Procollagen/blood , Retrospective Studies , Tartrate-Resistant Acid Phosphatase
2.
J Biol Chem ; 278(50): 49685-90, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14522972

ABSTRACT

Membrane potential has a major influence on stimulus-secretion coupling in various excitable cells. The role of membrane potential in the regulation of parathyroid hormone secretion is not known. High K+-induced depolarization increases secretion from parathyroid cells. The paradox is that increased extracellular Ca2+, which inhibits secretion, has also been postulated to have a depolarizing effect. In this study, human parathyroid cells from parathyroid adenomas were used in patch clamp studies of K+ channels and membrane potential. Detailed characterization revealed two K+ channels that were strictly dependent of intracellular Ca2+ concentration. At high extracellular Ca2+, a large K+ current was seen, and the cells were hyperpolarized (-50.4 +/- 13.4 mV), whereas lowering of extracellular Ca2+ resulted in a dramatic decrease in K+ current and depolarization of the cells (-0.1 +/- 8.8 mV, p < 0.001). Changes in extracellular Ca2+ did not alter K+ currents when intracellular Ca2+ was clamped, indicating that K+ channels are activated by intracellular Ca2+. The results were concordant in cell-attached, perforated patch, whole-cell and excised membrane patch configurations. These results suggest that [Ca2+]o regulates membrane potential of human parathyroid cells via Ca2+-activated K+ channels and that the membrane potential may be of greater importance for the stimulus-secretion coupling than recognized previously.


Subject(s)
Calcium/metabolism , Parathyroid Glands/cytology , Parathyroid Glands/physiology , Potassium Channels/chemistry , Adenoma/metabolism , Adult , Aged , Aged, 80 and over , Calcium/chemistry , Electrophysiology , Humans , Kinetics , Membrane Potentials , Middle Aged , Parathyroid Hormone/chemistry , Patch-Clamp Techniques , Potassium/chemistry
3.
N Engl J Med ; 349(18): 1722-9, 2003 Oct 30.
Article in English | MEDLINE | ID: mdl-14585940

ABSTRACT

BACKGROUND: We looked for mutations of the HRPT2 gene, which encodes the parafibromin protein, in sporadic parathyroid carcinoma because germ-line inactivating HRPT2 mutations have been found in a type of familial hyperparathyroidism--hyperparathyroidism-jaw tumor (HPT-JT) syndrome--that carries an increased risk of parathyroid cancer. METHODS: We directly sequenced the full coding and flanking splice-junctional regions of the HRPT2 gene in 21 parathyroid carcinomas from 15 patients who had no known family history of primary hyperparathyroidism or the HPT-JT syndrome at presentation. We also sought to confirm the somatic nature of the identified mutations and tested the carcinomas for tumor-specific loss of heterozygosity at HRPT2. RESULTS: Parathyroid carcinomas from 10 of the 15 patients had HRPT2 mutations, all of which were predicted to inactivate the encoded parafibromin protein. Two distinct HRPT2 mutations were found in tumors from five patients, and biallelic inactivation as a result of a mutation and loss of heterozygosity was found in one tumor. At least one HRPT2 mutation was demonstrably somatic in carcinomas from six patients. Unexpectedly, HRPT2 mutations in the parathyroid carcinomas of three patients were identified as germ-line mutations. CONCLUSIONS: Sporadic parathyroid carcinomas frequently have HRPT2 mutations that are likely to be of pathogenetic importance. Certain patients with apparently sporadic parathyroid carcinoma carry germ-line mutations in HRPT2 and may have the HPT-JT syndrome or a phenotypic variant.


Subject(s)
Hyperparathyroidism/genetics , Mutation , Parathyroid Neoplasms/genetics , Proteins/genetics , Adult , DNA Mutational Analysis , Female , Germ-Line Mutation , Humans , Jaw Neoplasms/genetics , Loss of Heterozygosity , Male , Middle Aged , Syndrome , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...