Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Transl Med ; 22(1): 548, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849800

ABSTRACT

BACKGROUND: Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS: To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS: Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION: Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.


Subject(s)
Disease Progression , Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Humans , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Monoclonal Gammopathy of Undetermined Significance/immunology , Proteomics , Male , Female , Protein Biosynthesis , Middle Aged , Aged , Cluster Analysis , Plasma Cells/immunology , Plasma Cells/pathology , Plasma Cells/metabolism , Signal Transduction , Proteome/metabolism , Quality Control
2.
Cell Rep ; 42(7): 112786, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436893

ABSTRACT

Eukaryotic RNA pol II transcripts are capped at the 5' end by the methylated guanosine (m7G) moiety. In higher eukaryotes, CMTR1 and CMTR2 catalyze cap-proximal ribose methylations on the first (cap1) and second (cap2) nucleotides, respectively. These modifications mark RNAs as "self," blocking the activation of the innate immune response pathway. Here, we show that loss of mouse Cmtr1 or Cmtr2 leads to embryonic lethality, with non-overlapping sets of transcripts being misregulated, but without activation of the interferon pathway. In contrast, Cmtr1 mutant adult mouse livers exhibit chronic activation of the interferon pathway, with multiple interferon-stimulated genes being expressed. Conditional deletion of Cmtr1 in the germline leads to infertility, while global translation is unaffected in the Cmtr1 mutant mouse liver and human cells. Thus, mammalian cap1 and cap2 modifications have essential roles in gene regulation beyond their role in helping cellular transcripts to evade the innate immune system.


Subject(s)
RNA Caps , Ribose , Humans , Animals , Mice , Methylation , RNA Caps/metabolism , Methyltransferases/metabolism , Interferons/metabolism , Fertility , Mammals/metabolism
3.
Hum Genet ; 141(2): 209-215, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34757492

ABSTRACT

ALKBH8 is a methyltransferase that modifies tRNAs by methylating the anticodon wobble uridine residue. The syndrome of ALKBH8-related intellectual developmental disability (MRT71) has thus far been reported solely in the context of homozygous truncating variants that cluster in the last exon. This raises interesting questions about the disease mechanism, because these variants are predicted to escape nonsense mediated decay and yet they appear to be loss of function. Furthermore, the limited class of reported variants complicates the future interpretation of missense variants in ALKBH8. Here, we report a consanguineous family in which two children with MRT71-compatible phenotype are homozygous for a novel missense variant in the methyltransferase domain. We confirm the pathogenicity of this variant by demonstrating complete absence of ALKBH8-dependent modifications in patient cells. Targeted proteomics analysis of ALKBH8 indicates that the variant does not lead to loss of ALKBH8 protein expression. This report adds to the clinical delineation of MRT71, confirms loss of function of ALKBH8 as the disease mechanism and expands the repertoire of its molecular lesions.


Subject(s)
AlkB Homolog 8, tRNA Methyltransferase/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Mutation, Missense , AlkB Homolog 8, tRNA Methyltransferase/chemistry , AlkB Homolog 8, tRNA Methyltransferase/metabolism , Amino Acid Sequence , Child , Consanguinity , Conserved Sequence , Developmental Disabilities/enzymology , Female , Homozygote , Humans , Intellectual Disability/enzymology , Male , Microcephaly/genetics , Models, Molecular , Pedigree , RNA Processing, Post-Transcriptional , Seizures/genetics
4.
Cell ; 184(12): 3125-3142.e25, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33930289

ABSTRACT

The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3' splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3' splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation.


Subject(s)
Adenosine/analogs & derivatives , RNA Splice Sites/genetics , RNA Splicing/genetics , Splicing Factor U2AF/metabolism , Adenosine/metabolism , Amino Acid Sequence , Animals , Base Sequence , Caenorhabditis elegans/genetics , Conserved Sequence/genetics , Diet , HeLa Cells , Humans , Introns/genetics , Methionine Adenosyltransferase , Methylation , Methyltransferases/chemistry , Mice , Mutation/genetics , Nucleic Acid Conformation , Protein Binding , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Nuclear , S-Adenosylmethionine , Transcriptome/genetics
5.
DNA Repair (Amst) ; 95: 102927, 2020 11.
Article in English | MEDLINE | ID: mdl-32920299

ABSTRACT

Our genome is constantly subject to damage from exogenous and endogenous sources, and cells respond to such damage by initiating a DNA damage response (DDR). Failure to induce an adequate DDR can result in increased mutation load, chromosomal aberrations and a variety of human diseases, including cancer. A rapidly growing body of evidence suggests that a large number of RNA binding proteins are involved in the DDR, and several canonical DNA repair factors have moonlighting functions in RNA metabolism. RNA polymerases and RNA itself have been implicated at various stages of the DDR, including damage sensing, recruitment of DNA repair factors and tethering of broken DNA ends. RNA may even serve as a template for DNA repair under certain conditions. Given the vast number of non-coding RNAs in cells, we have barely started to decipher their potential involvement in genomic maintenance and future research on the interrelationship between RNA and DNA repair may open entirely new treatment options for human disease.


Subject(s)
DNA Repair , RNA-Binding Proteins/metabolism , RNA/metabolism , Animals , DNA-Directed RNA Polymerases/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Humans
6.
Cell Rep ; 32(7): 108038, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814042

ABSTRACT

The 5' end of eukaryotic mRNAs is protected by the m7G-cap structure. The transcription start site nucleotide is ribose methylated (Nm) in many eukaryotes, whereas an adenosine at this position is further methylated at the N6 position (m6A) by the mammalian Phosphorylated C-terminal domain (CTD)-interacting Factor 1 (PCIF1) to generate m6Am. Here, we show that although the loss of cap-specific m6Am in mice does not affect viability or fertility, the Pcif1 mutants display reduced body weight. Transcriptome analyses of mutant mouse tissues support a role for the cap-specific m6Am modification in stabilizing transcripts. In contrast, the Drosophila Pcif1 is catalytically dead, but like its mammalian counterpart, it retains the ability to associate with the Ser5-phosphorylated CTD of RNA polymerase II (RNA Pol II). Finally, we show that the Trypanosoma Pcif1 is an m6Am methylase that contributes to the N6,N6,2'-O-trimethyladenosine (m62Am) in the hypermethylated cap4 structure of trypanosomatids. Thus, PCIF1 has evolved to function in catalytic and non-catalytic roles.


Subject(s)
RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Drosophila melanogaster , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription, Genetic
7.
Sci Rep ; 9(1): 11065, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363131

ABSTRACT

In most mammalian cells, DNA replication occurs once, and only once between cell divisions. Replication initiation is a highly regulated process with redundant mechanisms that prevent errant initiation events. In lower eukaryotes, replication is initiated from a defined consensus sequence, whereas a consensus sequence delineating mammalian origin of replication has not been identified. Here we show that 5-hydroxymethylcytosine (5hmC) is present at mammalian replication origins. Our data support the hypothesis that 5hmC has a role in cell cycle regulation. We show that 5hmC level is inversely proportional to proliferation; indeed, 5hmC negatively influences cell division by increasing the time a cell resides in G1. Our data suggest that 5hmC recruits replication-licensing factors, then is removed prior to or during origin firing. Later we propose that TET2, the enzyme catalyzing 5mC to 5hmC conversion, acts as barrier to rereplication. In a broader context, our results significantly advance the understating of 5hmC involvement in cell proliferation and disease states.


Subject(s)
5-Methylcytosine/analogs & derivatives , Cell Cycle/genetics , Cell Division/physiology , Cell Proliferation/physiology , DNA Replication/physiology , 5-Methylcytosine/metabolism , HeLa Cells , Humans , Replication Origin
8.
Am J Hum Genet ; 104(6): 1202-1209, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31079898

ABSTRACT

The wobble hypothesis was proposed to explain the presence of fewer tRNAs than possible codons. The wobble nucleoside position in the anticodon stem-loop undergoes a number of modifications that help maintain the efficiency and fidelity of translation. AlkB homolog 8 (ALKBH8) is an atypical member of the highly conserved AlkB family of dioxygenases and is involved in the formation of mcm5s2U, (S)-mchm5U, (R)-mchm5U, mcm5U, and mcm5Um at the anticodon wobble uridines of specific tRNAs. In two multiplex consanguineous families, we identified two homozygous truncating ALKBH8 mutations causing intellectual disability. Analysis of tRNA derived from affected individuals showed the complete absence of these modifications, consistent with the presumptive loss of function of the variants. Our results highlight the sensitivity of the brain to impaired wobble modification and expand the list of intellectual-disability syndromes caused by mutations in genes related to tRNA modification.


Subject(s)
AlkB Homolog 8, tRNA Methyltransferase/genetics , Codon/metabolism , Genes, Recessive/genetics , Intellectual Disability/etiology , Mutation , RNA, Transfer/metabolism , Uridine/metabolism , Adolescent , Adult , Child , Child, Preschool , Codon/genetics , Female , Humans , Intellectual Disability/pathology , Male , RNA, Transfer/genetics , Uridine/chemistry , Uridine/genetics , Young Adult , tRNA Methyltransferases/metabolism
9.
Nat Neurosci ; 22(4): 534-544, 2019 04.
Article in English | MEDLINE | ID: mdl-30778148

ABSTRACT

DNA modification is known to regulate experience-dependent gene expression. However, beyond cytosine methylation and its oxidated derivatives, very little is known about the functional importance of chemical modifications on other nucleobases in the brain. Here we report that in adult mice trained in fear extinction, the DNA modification N6-methyl-2'-deoxyadenosine (m6dA) accumulates along promoters and coding sequences in activated prefrontal cortical neurons. The deposition of m6dA is associated with increased genome-wide occupancy of the mammalian m6dA methyltransferase, N6amt1, and this correlates with extinction-induced gene expression. The accumulation of m6dA is associated with transcriptional activation at the brain-derived neurotrophic factor (Bdnf) P4 promoter, which is required for Bdnf exon IV messenger RNA expression and for the extinction of conditioned fear. These results expand the scope of DNA modifications in the adult brain and highlight changes in m6dA as an epigenetic mechanism associated with activity-induced gene expression and the formation of fear extinction memory.


Subject(s)
DNA Methylation , Deoxyadenosines/metabolism , Extinction, Psychological/physiology , Fear , Gene Expression Regulation , Neurons/metabolism , Prefrontal Cortex/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Epigenesis, Genetic , Male , Mice, Inbred C57BL , RNA, Messenger/metabolism
10.
Genes Dev ; 31(10): 990-1006, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28637692

ABSTRACT

Understanding the biologic role of N6-methyladenosine (m6A) RNA modifications in mRNA requires an understanding of when and where in the life of a pre-mRNA transcript the modifications are made. We found that HeLa cell chromatin-associated nascent pre-mRNA (CA-RNA) contains many unspliced introns and m6A in exons but very rarely in introns. The m6A methylation is essentially completed upon the release of mRNA into the nucleoplasm. Furthermore, the content and location of each m6A modification in steady-state cytoplasmic mRNA are largely indistinguishable from those in the newly synthesized CA-RNA or nucleoplasmic mRNA. This result suggests that quantitatively little methylation or demethylation occurs in cytoplasmic mRNA. In addition, only ∼10% of m6As in CA-RNA are within 50 nucleotides of 5' or 3' splice sites, and the vast majority of exons harboring m6A in wild-type mouse stem cells is spliced the same in cells lacking the major m6A methyltransferase Mettl3. Both HeLa and mouse embryonic stem cell mRNAs harboring m6As have shorter half-lives, and thousands of these mRNAs have increased half-lives (twofold or more) in Mettl3 knockout cells compared with wild type. In summary, m6A is added to exons before or soon after exon definition in nascent pre-mRNA, and while m6A is not required for most splicing, its addition in the nascent transcript is a determinant of cytoplasmic mRNA stability.


Subject(s)
Cytoplasm/metabolism , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , Animals , Chromatin/metabolism , Embryonic Stem Cells , Exons/genetics , Gene Knockout Techniques , HeLa Cells , Humans , Introns/genetics , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Mice
11.
Cell Discov ; 3: 17013, 2017.
Article in English | MEDLINE | ID: mdl-28529766

ABSTRACT

Sertoli cells have dual roles during the cells' lifetime. In the juvenile mammal, Sertoli cells proliferate and create the structure of the testis, and during puberty they cease to proliferate and take on the adult role of supporting germ cells through spermatogenesis. Accordingly, many genes expressed in Sertoli cells during testis formation are repressed during spermatogenesis. 5-Hydroxymethylcytosine (5hmC) is a DNA modification enzymatically generated from 5mC and present in all investigated mammalian tissues at varying levels. Using mass spectrometry and immunofluorescence staining we identified a substantial Sertoli cell-specific global 5hmC increase during rat puberty. Chemical labeling, pull-down and sequencing of 5hmC-containing genomic DNA from juvenile and adult rat Sertoli cells revealed that genes that lose or gain 5hmC belong to different functional pathways and mirror the functions of the cells in the two different states. Loss of 5hmC is associated with genes involved in development and cell structure, whereas gain of 5hmC is associated with genes involved in cellular pathways pertaining to the function of the adult Sertoli cells. This redistribution during maturation shows that 5hmC is a dynamic nucleotide modification, correlated to gene expression.

12.
Genes Dev ; 29(19): 2037-53, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26404942

ABSTRACT

We adapted UV CLIP (cross-linking immunoprecipitation) to accurately locate tens of thousands of m(6)A residues in mammalian mRNA with single-nucleotide resolution. More than 70% of these residues are present in the 3'-most (last) exons, with a very sharp rise (sixfold) within 150-400 nucleotides of the start of the last exon. Two-thirds of last exon m(6)A and >40% of all m(6)A in mRNA are present in 3' untranslated regions (UTRs); contrary to earlier suggestions, there is no preference for location of m(6)A sites around stop codons. Moreover, m(6)A is significantly higher in noncoding last exons than in next-to-last exons harboring stop codons. We found that m(6)A density peaks early in the 3' UTR and that, among transcripts with alternative polyA (APA) usage in both the brain and the liver, brain transcripts preferentially use distal polyA sites, as reported, and also show higher proximal m(6)A density in the last exons. Furthermore, when we reduced m6A methylation by knocking down components of the methylase complex and then examined 661 transcripts with proximal m6A peaks in last exons, we identified a set of 111 transcripts with altered (approximately two-thirds increased proximal) APA use. Taken together, these observations suggest a role of m(6)A modification in regulating proximal alternative polyA choice.


Subject(s)
3' Untranslated Regions/genetics , Adenosine/metabolism , DNA Methylation/genetics , Exons/genetics , Gene Expression Regulation , RNA, Messenger/chemistry , Animals , Brain/cytology , Brain/metabolism , Cell Line , Gene Knockdown Techniques , Humans , Liver/cytology , Liver/metabolism , Mice , Polyadenylation , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
13.
DNA Repair (Amst) ; 12(3): 188-95, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23276627

ABSTRACT

Cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) lesions induced in DNA and RNA in vitro and in pre-damaged DNA and RNA bacteriophages in vivo are repaired by the Escherichia coli (E. coli) protein AlkB and a human homolog, ALKBH3. However, it is not known whether endogenous RNA is repaired in vivo by repair proteins present at physiological concentrations. The concept of RNA repair as a biologically relevant process has therefore remained elusive. Here, we demonstrate AlkB-mediated repair of endogenous RNA in vivo by measuring differences in lesion-accumulation in two independent AlkB-proficient and deficient E. coli strains during exposure to methyl methanesulfonate (MMS). Repair was observed both in AlkB-overproducing strains and in the wild-type strains after AlkB induction. RNA repair appeared to be highest in RNA species below 200 nucleotides in size, mainly comprising tRNAs. Strikingly, at least 10-fold more lesions were repaired in RNA than in DNA. This may be a consequence of some 30-fold higher levels of aberrant methylation in RNA than in DNA after exposure to MMS. A high primary kinetic isotope effect (>10) was measured using a deuterated methylated RNA substrate, D3-1me(rA), demonstrating that it is the catalytic step, and not the search step that is rate-limiting. Our results demonstrate that RNA repair by AlkB takes place in endogenous RNA as part of an adaptive response in wild-type E. coli cells.


Subject(s)
Escherichia coli Proteins/physiology , Escherichia coli/enzymology , Mixed Function Oxygenases/physiology , RNA, Bacterial/genetics , Adaptation, Physiological/genetics , Alkylating Agents/pharmacology , DNA Repair , DNA, Bacterial/genetics , Enzyme Induction , Escherichia coli/genetics , Kinetics , Methyl Methanesulfonate/pharmacology , Methylation , RNA, Bacterial/metabolism
14.
Mol Cell ; 49(2): 339-45, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23246433

ABSTRACT

Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) is a base excision repair enzyme that removes uracil and oxidised pyrimidines from DNA. We show that SMUG1 interacts with the pseudouridine synthase Dyskerin (DKC1) and colocalizes with DKC1 in nucleoli and Cajal bodies. As DKC1 functions in RNA processing, we tested whether SMUG1 excised modified bases in RNA and demonstrated that SMUG1 has activity on single-stranded RNA containing 5-hydroxymethyldeoxyuridine, but not pseudouridine, the nucleoside resulting from isomerization of uridine by DKC1. Moreover, SMUG1 associates with the 47S rRNA precursor processed by DKC1, and depletion of SMUG1 leads to a reduction in the levels of mature rRNA accompanied by an increase in polyadenylated rRNA. Depletion of SMUG1, and, in particular, the combined loss of SMUG1 and DKC1, leads to accumulation of 5-hydroxymethyluridine in rRNA. In conclusion, SMUG1 is a DKC1 interaction partner that contributes to rRNA quality control, partly by regulating 5-hydroxymethyluridine levels.


Subject(s)
Cell Cycle Proteins/metabolism , Nuclear Proteins/metabolism , RNA Processing, Post-Transcriptional , Uracil-DNA Glycosidase/metabolism , Cell Cycle Proteins/genetics , Cell Nucleolus/metabolism , Coiled Bodies/metabolism , Gene Library , HeLa Cells , Humans , Nuclear Proteins/genetics , Polyadenylation , Protein Binding , Protein Interaction Mapping , Protein Transport , RNA, Ribosomal, 18S/metabolism , RNA, Ribosomal, 28S/metabolism , RNA, Small Interfering/genetics , Uracil-DNA Glycosidase/genetics , Uridine/analogs & derivatives , Uridine/metabolism
15.
Nucleic Acids Res ; 39(19): 8430-44, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21745813

ABSTRACT

Cytotoxicity of 5-fluorouracil (FU) and 5-fluoro-2'-deoxyuridine (FdUrd) due to DNA fragmentation during DNA repair has been proposed as an alternative to effects from thymidylate synthase (TS) inhibition or RNA incorporation. The goal of the present study was to investigate the relative contribution of the proposed mechanisms for cytotoxicity of 5-fluoropyrimidines. We demonstrate that in human cancer cells, base excision repair (BER) initiated by the uracil-DNA glycosylase UNG is the major route for FU-DNA repair in vitro and in vivo. SMUG1, TDG and MBD4 contributed modestly in vitro and not detectably in vivo. Contribution from mismatch repair was limited to FU:G contexts at best. Surprisingly, knockdown of individual uracil-DNA glycosylases or MSH2 did not affect sensitivity to FU or FdUrd. Inhibitors of common steps of BER or DNA damage signalling affected sensitivity to FdUrd and HmdUrd, but not to FU. In support of predominantly RNA-mediated cytotoxicity, FU-treated cells accumulated ~3000- to 15 000-fold more FU in RNA than in DNA. Moreover, FU-cytotoxicity was partially reversed by ribonucleosides, but not deoxyribonucleosides and FU displayed modest TS-inhibition compared to FdUrd. In conclusion, UNG-initiated BER is the major route for FU-DNA repair, but cytotoxicity of FU is predominantly RNA-mediated, while DNA-mediated effects are limited to FdUrd.


Subject(s)
DNA Repair , Fluorouracil/metabolism , Uracil-DNA Glycosidase/metabolism , Animals , Cell Cycle , Cell Line, Tumor , DNA/chemistry , DNA/metabolism , DNA Damage , Endodeoxyribonucleases/genetics , Floxuridine/metabolism , Floxuridine/toxicity , Fluorouracil/toxicity , Gene Knockdown Techniques , Humans , Mice , MutS Homolog 2 Protein/genetics , RNA/metabolism , Thymidine/analogs & derivatives , Thymidine/metabolism , Thymidine/toxicity , Thymine DNA Glycosylase/genetics , Thymine DNA Glycosylase/metabolism , Uracil-DNA Glycosidase/genetics , Uridine/analogs & derivatives , Uridine/metabolism , Uridine/toxicity
16.
DNA Repair (Amst) ; 7(11): 1916-23, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-18723127

ABSTRACT

Aberrant methylations in DNA are repaired by base excision repair (BER) and direct repair by a methyltransferase or by an oxidative demethylase of the AlkB type. Yang et al. [Nature 452 (2008) 961-966] have now solved the crystal structure of AlkB and human AlkB homolog 2 (hABH2) in complex with DNA using an ingenious crosslinking strategy to stabilize the DNA-protein complex. AlkB proteins have similar catalytic domains, but different DNA recognition motifs. Whereas AlkB mainly makes contact with the damaged strand, hABH2 makes numerous contacts with both strands. hABH2 flips out the damaged base and fills the vacant space by a hydrophobic amino acid residue similar to DNA glycosylases, essentially without distorting the double helix structure. In contrast, AlkB squeezes together the bases flanking the flipped-out base to maintain the base stack. This unprecedented flipping mechanism and the differences between AlkB and hABH2 in contacting the DNA strands explain their preferences for single stranded- and double stranded DNA, respectively.


Subject(s)
DNA Repair Enzymes/chemistry , DNA Repair , DNA/genetics , Dioxygenases/chemistry , Escherichia coli Proteins/chemistry , Mixed Function Oxygenases/chemistry , AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase , Amino Acid Sequence , Cross-Linking Reagents/pharmacology , DNA Damage , DNA Methylation , DNA Repair Enzymes/physiology , Dioxygenases/physiology , Molecular Conformation , Molecular Sequence Data , Nucleic Acid Conformation , Protein Conformation , RNA/chemistry , Sequence Homology, Amino Acid
17.
J Biol Chem ; 283(36): 25046-56, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18603530

ABSTRACT

The Escherichia coli AlkB protein and human homologs hABH2 and hABH3 are 2-oxoglutarate (2OG)/Fe(II)-dependent DNA/RNA demethylases that repair 1-methyladenine and 3-methylcytosine residues. Surprisingly, hABH1, which displays the strongest homology to AlkB, failed to show repair activity in two independent studies. Here, we show that hABH1 is a mitochondrial protein, as demonstrated using fluorescent fusion protein expression, immunocytochemistry, and Western blot analysis. A fraction is apparently nuclear and this fraction increases strongly if the fluorescent tag is placed at the N-terminal end of the protein, thus interfering with mitochondrial targeting. Molecular modeling of hABH1 based upon the sequence and known structures of AlkB and hABH3 suggested an active site almost identical to these enzymes. hABH1 decarboxylates 2OG in the absence of a prime substrate, and the activity is stimulated by methylated nucleotides. Employing three different methods we demonstrate that hABH1 demethylates 3-methylcytosine in single-stranded DNA and RNA in vitro. Site-specific mutagenesis confirmed that the putative Fe(II) and 2OG binding residues are essential for activity. In conclusion, hABH1 is a functional mitochondrial AlkB homolog that repairs 3-methylcytosine in single-stranded DNA and RNA.


Subject(s)
Cytosine/analogs & derivatives , DNA Repair Enzymes/metabolism , DNA, Mitochondrial/metabolism , DNA, Single-Stranded/metabolism , Dioxygenases/metabolism , Mitochondrial Proteins/metabolism , RNA/metabolism , AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase , AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase , Cytosine/metabolism , DNA Methylation , DNA Repair Enzymes/genetics , DNA, Mitochondrial/genetics , DNA, Single-Stranded/genetics , Dioxygenases/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , HeLa Cells , Humans , Mitochondrial Proteins/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , RNA/genetics , RNA Processing, Post-Transcriptional/physiology , RNA, Mitochondrial , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...