Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Virol ; 166(5): 1447-1453, 2021 May.
Article in English | MEDLINE | ID: mdl-33687538

ABSTRACT

Challenging wild plant accessions with pathogens is an initial approach for finding resistance genes for breeding programs. Viruses can be transmitted artificially by mechanical or arthropod-borne inoculation, but these experimental assays do not always reproduce natural conditions in the field. In this study, 56 wild Capsicum spp. accessions from Ecuador that were under natural inoculum pressure for six months were screened for virus infections by RNA sequencing. These plants exhibited low virus diversity in comparison to a commercial pepper cultivar that was used as a susceptible host. Subjecting numerous plants to natural infection prior to artificial assays may indicate promising accessions to track within virus/vector resistance breeding programs.


Subject(s)
Capsicum/virology , Plant Diseases/virology , Biodiversity , Capsicum/classification , Capsicum/genetics , Disease Resistance/genetics , Ecuador , Plant Breeding , RNA, Viral/genetics , Viruses/classification , Viruses/genetics , Viruses/isolation & purification
2.
J Gen Virol ; 102(2)2021 02.
Article in English | MEDLINE | ID: mdl-33210991

ABSTRACT

Tobamoviruses are often referred to as the most notorious viral pathogens of pepper crops. These viruses are not transmitted by invertebrate vectors, but rather by physical contact and seeds. In this study, pepper plants displaying mild mottle and mosaic symptoms were sampled in four different regions of Peru. Upon double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) tests, seven samples cross-reacted weakly with antibodies against pepper mild mottle virus (PMMoV), suggesting the presence of tobamoviruses. When employing RT-PCR, conserved primers amplified cDNA fragments of viruses from two putative new tobamovirus species in the samples. The complete genome of two representative isolates were, therefore, sequenced and analysed in silico. These viruses, which were tentatively named yellow pepper mild mottle virus (YPMMoV) and chilli pepper mild mottle virus (CPMMoV), shared highest nucleotide genome sequence identities of 83 and 85 % with bell pepper mottle virus (BpeMV), respectively. Mechanical inoculation of indicator plants with YPMMoV and CPMMoV isolates did not show any obvious differences in host ranges. These viruses were also inoculated mechanically on pepper plants harbouring different resistance L alleles to determine their pathotypes. Pepper plants carrying unfunctional L alleles (L0) to tobamoviruses were infected by all isolates and presented differential symptomatology for YPMMoV and CPMMoV. On the other hand, pepper plants carrying L1, L2, L3 and L4 alleles were resistant to all isolates, indicating that these viruses belong to pathotype P0.


Subject(s)
Plant Diseases/virology , Tobamovirus/classification , Tobamovirus/genetics , Base Sequence , Capsicum/virology , DNA Primers/genetics , DNA, Viral/genetics , Genome, Viral , Host Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...