Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37973298

ABSTRACT

Glyphosate-based herbicides (GBH) are the most used pesticides worldwide. This widespread dissemination raises the question of non-target effects on a wide range of organisms, including soil micro-organisms. Despite a large body of scientific studies reporting the harmful effects of GBHs, the health and environmental safety of glyphosate and its commercial formulations remains controversial. In particular, contradictory results have been obtained on the possible genotoxicity of these herbicides depending on the organisms or biological systems tested, the modes and durations of exposure and the sensitivity of the detection technique used. We previously showed that the well-characterized soil filamentous fungus Aspergillus nidulans was highly affected by a commercial GBH formulation containing 450 g/L of glyphosate (R450), even when used at doses far below the agricultural application rate. In the present study, we analysed the possible mutagenicity of R450 in A. nidulans by screening for specific mutants after different modes of exposure to the herbicide. R450 was found to exert a mutagenic effect only after repeated exposure during growth on agar-medium, and depending on the metabolic status of the tested strain. The nature of some mutants and their ability to tolerate the herbicide better than did the wild-type strain suggested that their emergence may reflect an adaptive response of the fungus to offset the herbicide effects. The use of a non-selective molecular approach, the quantitative random amplified polymorphic DNA (RAPD-qPCR), showed that R450 could also exert a mutagenic effect after a one-shot overnight exposure during growth in liquid culture. However, this effect was subtle and no longer detectable when the fungus had previously been repeatedly exposed to the herbicide on a solid medium. This indicated an elevation of the sensitivity threshold of A. nidulans to the R450 mutagenicity, and thus confirmed the adaptive capacity of the fungus to the herbicide.


Subject(s)
Aspergillus nidulans , Herbicides , Soil , Mutagens/pharmacology , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Herbicides/toxicity , Random Amplified Polymorphic DNA Technique , Glyphosate
3.
Toxicol Res ; 37(4): 405-419, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34631497

ABSTRACT

Repeated health and environmental scandals, the loss of biodiversity and the recent burst of chronic diseases constantly remind us the inability of public authorities and risk assessment agencies to protect health and the environment. After reviewing the main shortcomings of our evaluation system of chemicals and new technologies, supported by some concrete examples, we develop a number of proposals to reform both the risk assessment agencies and the evaluation processes. We especially propose the establishment of an independent structure, a High Authority of Expertise, supervising, either at European level or at national level, all the evaluation agencies, and ensuring the transparency, the methodology and the deontology of the expertise. In addition to modifying the evaluation protocols, both in their nature and in their content, especially in order to adapt them to current pollutants such as endocrine disruptors, we propose a reform of the expertise processes based on transparency, contradiction, and greater democracy, including close collaboration between the institutional and scientific parties on the one hand and the whole civil society on the other. All the proposals we make are inspired by the desire to prevent, through appropriate mechanisms, the human, health, ecological, but also economic consequences of contemporary technological choices.

4.
Environ Res ; 182: 109116, 2020 03.
Article in English | MEDLINE | ID: mdl-32069763

ABSTRACT

Glyphosate-based herbicides, such as Roundup®, are the most widely used non-selective, broad-spectrum herbicides. The release of these compounds in large amounts into the environment is susceptible to affect soil quality and health, especially because of the non-target effects on a large range of organisms including soil microorganisms. The soil filamentous fungus Aspergillus nidulans, a well-characterized experimental model organism that can be used as a bio-indicator for agricultural soil health, has been previously shown to be highly affected by Roundup GT Plus (R450: 450 g/L of glyphosate) at concentrations far below recommended agricultural application rate, including at a dose that does not cause any macroscopic effect. In this study, we determined alterations in the transcriptome of A. nidulans when exposed to R450 at a dose corresponding to the no-observed-adverse-effect level (NOAEL) for macroscopic parameters. A total of 1816 distinct genes had their expression altered. The most affected biological functions were protein synthesis, amino acids and secondary metabolisms, stress response, as well as detoxification pathways through cytochromes P450, glutathione-S-transferases, and ABC transporters. These results partly explain the molecular mechanisms underlying alterations in growth parameters detected at higher concentrations for this ascomycete fungus. In conclusion, our results highlight molecular disturbances in a soil fungus under conditions of apparent tolerance to the herbicide, and thus confirm the need to question the principle of "substantial equivalence" when applied to plants made tolerant to herbicides.


Subject(s)
Aspergillus nidulans , Gene Expression Profiling , Glycine/analogs & derivatives , Herbicides , Aspergillus nidulans/drug effects , Aspergillus nidulans/metabolism , Glycine/toxicity , Herbicides/toxicity , Transcriptome , Glyphosate
5.
Environ Sci Pollut Res Int ; 24(33): 25933-25946, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28940012

ABSTRACT

Roundup® is a glyphosate-based herbicide (GBH) used worldwide both in agriculture and private gardens. Thus, it constitutes a substantial source of environmental contaminations, especially for water and soil, and may impact a number of non-target organisms essential for ecosystem balance. The soil filamentous fungus Aspergillus nidulans has been shown to be highly affected by a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), at doses far below recommended agricultural application rate. In the present study, we used two-dimensional gel electrophoresis combined to mass spectrometry to analyze proteomic pattern changes in A. nidulans exposed to R450 at a dose corresponding to the no-observed-adverse-effect level (NOAEL) for macroscopic parameters (31.5 mg/L GLY among adjuvants). Comparative analysis revealed a total of 82 differentially expressed proteins between control and R450-treated samples, and 85% of them (70) were unambiguously identified. Their molecular functions were mainly assigned to cell detoxification and stress response (16%), protein synthesis (14%), amino acid metabolism (13%), glycolysis/gluconeogenesis/glycerol metabolism/pentose phosphate pathway (13%) and Krebs TCA cycle/acetyl-CoA synthesis/ATP metabolism (10%). These results bring new insights into the understanding of the toxicity induced by higher doses of this herbicide in the soil model organism A. nidulans. To our knowledge, this study represents the first evidence of protein expression modulation and, thus, possible metabolic disturbance, in response to an herbicide treatment at a dose that does not cause any visible effect. These data are likely to challenge the concept of "substantial equivalence" when applied to herbicide-tolerant plants.


Subject(s)
Aspergillus nidulans/drug effects , Fungal Proteins/biosynthesis , Glycine/analogs & derivatives , Herbicides/toxicity , Proteomics/methods , Soil/chemistry , Animals , Aspergillus nidulans/metabolism , Ecosystem , Glycine/toxicity , No-Observed-Adverse-Effect Level , Glyphosate
7.
Curr Genet ; 62(4): 897-910, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27038308

ABSTRACT

Transcriptome profiling is a powerful tool for identifying gene networks from whole genome expression analysis in many living species. Here is described the first extensively characterized platform using Agilent microarray technology for transcriptome analysis in the filamentous fungus Aspergillus (Emericella) nidulans. We developed and validated a reliable gene expression microarray in 8 × 15 K format, with predictive and experimental data establishing its specificity and sensitivity. Either one or two 60-mer oligonucleotide probes were selected for each of 10,550 nuclear as well as 20 mitochondrial coding sequences. More than 99 % of probes were predicted to hybridize with 100 % identity to their aimed specific A. nidulans target only. Probe sensitivity was supported by a highly narrow distribution of melting temperatures together with thermodynamic features, which strongly favored probe-target perfect match hybridization, in comparison with predicted secondary structures. Array quality was evaluated through transcriptome comparison of two A. nidulans strains, differing by the presence or not of Escherichia coli LacZ transgene. High signal-to-noise ratios were measured, and signal reproducibility was established at intra-probe and inter-probe levels. Reproducibility of microarray performances was assessed by high correlation between two-color dye signals and between technical replicates. Results were confirmed by RT-qPCR analysis on five genes. Though it covers 100 % of the A. nidulans targeted coding sequences, this low density array allows limited experimental costs and simplified data analysis process, making it suitable for studying gene expression in this model organism through large numbers of experimental conditions, in basic, biomedical or industrial microbiology research fields.


Subject(s)
Aspergillus nidulans/genetics , Gene Expression Profiling/methods , Transcriptome , Computational Biology/methods , Gene Expression Profiling/standards , Genomics/methods , Genomics/standards , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Array Sequence Analysis/standards , Reproducibility of Results , Sensitivity and Specificity , Signal-To-Noise Ratio
8.
Environ Sci Pollut Res Int ; 23(14): 14393-404, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27068896

ABSTRACT

Soil microorganisms are highly exposed to glyphosate-based herbicides (GBH), especially to Roundup® which is widely used worldwide. However, studies on the effects of GBH formulations on specific non-rhizosphere soil microbial species are scarce. We evaluated the toxicity of a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), on the soil filamentous fungus Aspergillus nidulans, an experimental model microorganism. The median lethal dose (LD50) on solid media was between 90 and 112 mg/L GLY (among adjuvants, which are also included in the Roundup® formulation), which corresponds to a dilution percentage about 100 times lower than that used in agriculture. The LOAEL and NOAEL (lowest- and no-observed-adverse-effect levels) associated to morphology and growth were 33.75 and 31.5 mg/L GLY among adjuvants, respectively. The formulation R450 proved to be much more active than technical GLY. At the LD50 and lower concentrations, R450 impaired growth, cellular polarity, endocytosis, and mitochondria (average number, total volume and metabolism). In contrast with the depletion of mitochondrial activities reported in animal studies, R450 caused a stimulation of mitochondrial enzyme activities, thus revealing a different mode of action of Roundup® on energetic metabolism. These mitochondrial disruptions were also evident at a low dose corresponding to the NOAEL for macroscopic parameters, indicating that these mitochondrial biomarkers are more sensitive than those for growth and morphological ones. Altogether, our data indicate that GBH toxic effects on soil filamentous fungi, and thus potential impairment of soil ecosystems, may occur at doses far below recommended agricultural application rate.


Subject(s)
Aspergillus nidulans/drug effects , Glycine/analogs & derivatives , Herbicides/toxicity , Soil Microbiology , Ecosystem , Environment , Glycine/toxicity , Lethal Dose 50 , Glyphosate
9.
Fungal Genet Biol ; 68: 9-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24835019

ABSTRACT

In Aspergillus nidulans, the utilization of acetate as sole carbon source requires several genes (acu). Most of them are also required for the utilization of fatty acids. This is the case for acuD and acuE, which encode the two glyoxylate cycle-specific enzymes, isocitrate lyase and malate synthase, respectively, but also for acuL that we have identified as AN7287, and characterized in this study. Deletion of acuL resulted in the same phenotype as the original acuL217 mutant. acuL encodes a 322-amino acid protein which displays all the structural features of a mitochondrial membrane carrier, and shares 60% identity with the Saccharomyces cerevisiae succinate/fumarate mitochondrial antiporter Sfc1p (also named Acr1p). Consistently, the AcuL protein was shown to localize in mitochondria, and partial cross-complementation was observed between the S. cerevisiae and A. nidulans homologues. Extensive phenotypic characterization suggested that the acuL gene is involved in the utilization of carbon sources that are catabolized via the TCA cycle, and therefore require gluconeogenesis. In addition, acuL proves to be co-regulated with acuD and acuE. Overall, our data suggest that AcuL could link the glyoxylate cycle to gluconeogenesis by exchanging cytoplasmic succinate for mitochondrial fumarate.


Subject(s)
Aspergillus nidulans/genetics , Carbon/metabolism , Citric Acid Cycle , Fungal Proteins/genetics , Genes, Fungal , Mitochondrial Proteins/genetics , Amino Acid Sequence , Aspergillus nidulans/metabolism , Base Sequence , Fumarates/metabolism , Fungal Proteins/metabolism , Gluconeogenesis , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Saccharomyces cerevisiae/genetics , Succinic Acid/metabolism
10.
Int J Biol Sci ; 6(6): 590-8, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-20941377

ABSTRACT

We summarize the major points of international debate on health risk studies for the main commercialized edible GMOs. These GMOs are soy, maize and oilseed rape designed to contain new pesticide residues since they have been modified to be herbicide-tolerant (mostly to Roundup) or to produce mutated Bt toxins. The debated alimentary chronic risks may come from unpredictable insertional mutagenesis effects, metabolic effects, or from the new pesticide residues. The most detailed regulatory tests on the GMOs are three-month long feeding trials of laboratory rats, which are biochemically assessed. The tests are not compulsory, and are not independently conducted. The test data and the corresponding results are kept in secret by the companies. Our previous analyses of regulatory raw data at these levels, taking the representative examples of three GM maize NK 603, MON 810, and MON 863 led us to conclude that hepatorenal toxicities were possible, and that longer testing was necessary. Our study was criticized by the company developing the GMOs in question and the regulatory bodies, mainly on the divergent biological interpretations of statistically significant biochemical and physiological effects. We present the scientific reasons for the crucially different biological interpretations and also highlight the shortcomings in the experimental protocols designed by the company. The debate implies an enormous responsibility towards public health and is essential due to nonexistent traceability or epidemiological studies in the GMO-producing countries.


Subject(s)
Crops, Agricultural/adverse effects , Crops, Agricultural/genetics , Food Safety , Plants, Genetically Modified/adverse effects , Risk Assessment/methods , Animals , Humans , Models, Statistical , Pesticides/adverse effects , Plants, Genetically Modified/genetics , Rats
11.
Curr Genet ; 56(4): 341-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20495807

ABSTRACT

While carrying out a systematic disruption of the genes of unknown function in the alc gene cluster from the filamentous fungus Aspergillus nidulans, we observed a strong diminution of the transcription of markers inserted in the alcS gene. This was found to be the case for the two markers tested, nadA (from A. nidulans) and pyrG (from A. fumigatus) involved in purine utilization and uracil/uridine biosynthetic pathway, respectively. The same phenomenon was also observed with insertion of the nadA gene in the alcM locus, another gene of the alc cluster. In the case of nadA, the level of expression was directly correlated to the ability of the corresponding strains to grow on adenine as a sole nitrogen source. The insertion of the pyrG marker into alcS complemented perfectly vegetative growth, but did not allow a proper sexual cycle. This suggests that the lowered pyrG expression is not sufficient to provide the intracellular concentration of pyrimidines required for the sexual cycle. Thus, due caution must be exercised when disrupting genes with pyrG, one of the most commonly employed markers, especially if the gene to be disrupted is involved or suspected to be involved in the sexual cycle.


Subject(s)
Aspergillus nidulans/genetics , Gene Silencing , Transcription Factors , Transgenes , Genes, Fungal , Genetic Loci , Genetic Markers , Methods
12.
Biochem J ; 412(3): 485-93, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18302536

ABSTRACT

In a previous study, alcS, a gene of the Aspergillus nidulans alc cluster, was shown to encode a protein that belongs to the GPR1/FUN34/YaaH membrane protein family. BLAST screening of the A. nidulans genome data identified additional genes encoding hypothetical proteins that could belong to this family. In this study we report the functional characterization of one of them, AN5226. Its expression is induced by ethanol and ethyl acetate (two inducers of the alc genes) and is mediated by the specific transcriptional activator of genes of the acetate-utilization pathway FacB. Growth of a null mutant (DeltaAN5226) is notably affected when acetate is used as sole carbon source at low concentration and in a high pH medium, i.e. when protonated acetate, the form that can enter the cell by passive diffusion, is present in low amounts. Consistently, expression of AN5226 is also induced by acetate, but only when the latter is present at low concentrations. (14)C-labelled acetate uptake experiments using germinating conidia demonstrate an essential role for AN5226 in mediated acetate transport. To our knowledge this report is the first to provide evidence for the identification of an acetate transporter in filamentous fungi. We have designated AN5226 as acpA (for acetate permease A).


Subject(s)
Acetates/metabolism , Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Membrane Transport Proteins/metabolism , Amino Acid Sequence , Base Sequence , Fungal Proteins/genetics , Genes, Fungal , Hydrogen-Ion Concentration , Membrane Transport Proteins/genetics , Molecular Sequence Data , Multigene Family , Phylogeny , Sodium Acetate/metabolism , Transcription, Genetic
13.
Fungal Genet Biol ; 43(4): 247-60, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16531087

ABSTRACT

The ethanol utilization pathway (alc system) of Aspergillus nidulans requires two structural genes, alcA and aldA, which encode the two enzymes (alcohol dehydrogenase and aldehyde dehydrogenase, respectively) allowing conversion of ethanol into acetate via acetyldehyde, and a regulatory gene, alcR, encoding the pathway-specific autoregulated transcriptional activator. The alcR and alcA genes are clustered with three other genes that are also positively regulated by alcR, although they are dispensable for growth on ethanol. In this study, we characterized alcS, the most abundantly transcribed of these three genes. alcS is strictly co-regulated with alcA, and encodes a 262-amino acid protein. Sequence comparison with protein databases detected a putative conserved domain that is characteristic of the novel GPR1/FUN34/YaaH membrane protein family. It was shown that the AlcS protein is located in the plasma membrane. Deletion or overexpression of alcS did not result in any obvious phenotype. In particular, AlcS does not appear to be essential for the transport of ethanol, acetaldehyde or acetate. Basic Local Alignment Search Tool analysis against the A. nidulans genome led to the identification of two novel ethanol- and ethylacetate-induced genes encoding other members of the GPR1/FUN34/YaaH family, AN5226 and AN8390.


Subject(s)
Aspergillus nidulans/genetics , Fungal Proteins/genetics , Genes, Fungal , Membrane Proteins/genetics , Alcohol Dehydrogenase/genetics , Aldehyde Dehydrogenase/genetics , Amino Acid Motifs , Amino Acid Sequence , Aspergillus nidulans/metabolism , Base Sequence , Blotting, Northern , Cell Membrane/chemistry , Conserved Sequence , DNA, Fungal/chemistry , DNA, Fungal/genetics , Fungal Proteins/chemistry , Gene Deletion , Gene Dosage , Gene Expression Regulation, Fungal , Introns/genetics , Membrane Proteins/chemistry , Molecular Sequence Data , Multigene Family , Mutagenesis, Insertional , Open Reading Frames , RNA, Fungal/analysis , RNA, Messenger/analysis , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Transcription, Genetic
14.
EMBO J ; 21(23): 6440-51, 2002 Dec 02.
Article in English | MEDLINE | ID: mdl-12456651

ABSTRACT

Mitochondrial citrate synthase (mCS) is the initial enzyme of the tricarboxylic acid (TCA) cycle. Despite the key position of this protein in respiratory metabolism, very few studies have addressed the question of the effects of the absence of mCS in development. Here we report on the characterization of 15 point mutations and a complete deletion of the cit1 gene, which encodes mCS in the filamentous fungus Podospora anserina. This gene was identified genetically through a systematic search for suppressors of the metabolic defect of the peroxisomal pex2 mutants. The cit1 mutant strains exhibit no visible vegetative defects. However, they display an unexpected developmental phenotype: in homozygous crosses, cit1 mutations impair meiosis progression beyond the diffuse stage, a key stage of meiotic prophase. Enzyme assays, immunofluorescence and western blotting experiments show that the presence of the mCS protein is more important for completion of meiosis than its well-known enzyme activity. Combined with observations made in budding yeast, our data suggest that there is a general metabolic checkpoint at the diffuse stage in eukaryotes.


Subject(s)
Citrate (si)-Synthase/metabolism , Meiosis/physiology , Mitochondria/metabolism , Ascomycota/physiology , Citrate (si)-Synthase/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Peroxisomal Biogenesis Factor 2 , Peroxisomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...