Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Sci Rep ; 14(1): 13139, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849394

ABSTRACT

The enzyme dUTPase has an essential role in maintaining genomic integrity. In mouse, nuclear and mitochondrial isoforms of the enzyme have been described. Here we present the isoform-specific mRNA expression levels in different murine organs during development using RT-qPCR. In this study, we analyzed organs of 14.5-day embryos and of postnatal 2-, 4-, 10-week- and 13-month-old mice. We demonstrate organ-, sex- and developmental stage-specific differences in the mRNA expression levels of both isoforms. We found high mRNA expression level of the nuclear isoform in the embryo brain, and the expression level remained relatively high in the adult brain as well. This was surprising, since dUTPase is known to play an important role in proliferating cells, and mass production of neural cells is completed by adulthood. Thus, we investigated the pattern of the dUTPase protein expression specifically in the adult brain with immunostaining and found that dUTPase is present in the germinative zones, the subventricular and the subgranular zones, where neurogenesis occurs and in the rostral migratory stream where neuroblasts migrate to the olfactory bulb. These novel findings suggest that dUTPase may have a role in cell differentiation and indicate that accurate dTTP biosynthesis can be vital, especially in neurogenesis.


Subject(s)
Brain , Neurogenesis , Pyrophosphatases , Animals , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Mice , Female , Male , Brain/metabolism , Brain/growth & development , Gene Expression Regulation, Developmental , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Sci Rep ; 14(1): 11608, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773163

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, carcinogenic substances. On soils contaminated with PAHs, crop cultivation, animal husbandry and even the survival of microflora in the soil are greatly perturbed, depending on the degree of contamination. Most microorganisms cannot tolerate PAH-contaminated soils, however, some microbial strains can adapt to these harsh conditions and survive on contaminated soils. Analysis of the metagenomes of contaminated environmental samples may lead to discovery of PAH-degrading enzymes suitable for green biotechnology methodologies ranging from biocatalysis to pollution control. In the present study, our goal was to apply a metagenomic data search to identify efficient novel enzymes in remediation of PAH-contaminated soils. The metagenomic hits were further analyzed using a set of bioinformatics tools to select protein sequences predicted to encode well-folded soluble enzymes. Three novel enzymes (two dioxygenases and one peroxidase) were cloned and used in soil remediation microcosms experiments. The experimental design of the present study aimed at evaluating the effectiveness of the novel enzymes on short-term PAH degradation in the soil microcosmos model. The novel enzymes were found to be efficient for degradation of naphthalene and phenanthrene. Adding the inorganic oxidant CaO2 further increased the degrading potential of the novel enzymes for anthracene and pyrene. We conclude that metagenome mining paired with bioinformatic predictions, structural modelling and functional assays constitutes a powerful approach towards novel enzymes for soil remediation.


Subject(s)
Biodegradation, Environmental , Metagenomics , Polycyclic Aromatic Hydrocarbons , Soil Microbiology , Soil Pollutants , Metagenomics/methods , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Dioxygenases/metabolism , Dioxygenases/genetics , Dioxygenases/chemistry , Phenanthrenes/metabolism , Naphthalenes/metabolism , Metagenome
3.
Int J Biol Macromol ; 268(Pt 2): 131939, 2024 May.
Article in English | MEDLINE | ID: mdl-38692555

ABSTRACT

Human tyrosine hydroxylase (hTH) has key role in the production of catecholamine neurotransmitters. The structure, function and regulation of hTH has been extensively researched area and the possibility of enzyme replacement therapy (ERT) involving hTH through nanocarriers has been raised as well. However, our understanding on how hTH may interact with nanocarriers is still lacking. In this work, we attempted to investigate the immobilization of hTH on magnetic nanoparticles (MNPs) with various surface linkers in quantitative and mechanistic detail. Our results showed that the activity of hTH was retained after immobilization via secondary and covalent interactions as well. The colloidal stability of hTH could be also enhanced proved by Dynamic light scattering and Zeta potential analysis and a homogenous enzyme layer could be achieved, which was investigated by Raman mapping. The covalent attachment of hTH on MNPs via aldehyde or epoxy linkers provide irreversible immobilization and 38.1 % and 16.5 % recovery (ER). The hTH-MNPs catalyst had 25 % ER in average in simulated nasal electrolyte solution (SNES). This outcome highlights the relevance of immobilization applying MNPs as a potential formulation tool of sensitive therapeutic enzymes offering new opportunities for ERT related to neurodegenerative disorders.


Subject(s)
Enzymes, Immobilized , Magnetite Nanoparticles , Tyrosine 3-Monooxygenase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/chemistry , Magnetite Nanoparticles/chemistry , Enzyme Stability
4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473821

ABSTRACT

Mutated genes may lead to cancer development in numerous tissues. While more than 600 cancer-causing genes are known today, some of the most widespread mutations are connected to the RAS gene; RAS mutations are found in approximately 25% of all human tumors. Specifically, KRAS mutations are involved in the three most lethal cancers in the U.S., namely pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and lung adenocarcinoma. These cancers are among the most difficult to treat, and they are frequently excluded from chemotherapeutic attacks as hopeless cases. The mutated KRAS proteins have specific three-dimensional conformations, which perturb functional interaction with the GAP protein on the GAP-RAS complex surface, leading to a signaling cascade and uncontrolled cell growth. Here, we describe a gluing docking method for finding small molecules that bind to both the GAP and the mutated KRAS molecules. These small molecules glue together the GAP and the mutated KRAS molecules and may serve as new cancer drugs for the most lethal, most difficult-to-treat, carcinomas. As a proof of concept, we identify two new, drug-like small molecules with the new method; these compounds specifically inhibit the growth of the PANC-1 cell line with KRAS mutation G12D in vitro and in vivo. Importantly, the two new compounds show significantly lower IC50 and higher specificity against the G12D KRAS mutant human pancreatic cancer cell line PANC-1, as compared to the recently described selective G12D KRAS inhibitor MRTX-1133.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Drug Development
5.
Nat Cancer ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448522

ABSTRACT

Gemcitabine is a potent inhibitor of DNA replication and is a mainstay therapeutic for diverse cancers, particularly pancreatic ductal adenocarcinoma (PDAC). However, most tumors remain refractory to gemcitabine therapies. Here, to define the cancer cell response to gemcitabine, we performed genome-scale CRISPR-Cas9 chemical-genetic screens in PDAC cells and found selective loss of cell fitness upon disruption of the cytidine deaminases APOBEC3C and APOBEC3D. Following gemcitabine treatment, APOBEC3C and APOBEC3D promote DNA replication stress resistance and cell survival by deaminating cytidines in the nuclear genome to ensure DNA replication fork restart and repair in PDAC cells. We provide evidence that the chemical-genetic interaction between APOBEC3C or APOBEC3D and gemcitabine is absent in nontransformed cells but is recapitulated across different PDAC cell lines, in PDAC organoids and in PDAC xenografts. Thus, we uncover roles for APOBEC3C and APOBEC3D in DNA replication stress resistance and offer plausible targets for improving gemcitabine-based therapies for PDAC.

6.
FEBS J ; 291(8): 1759-1779, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308815

ABSTRACT

Nuclear Piwi/Piwi-interacting RNA complexes mediate co-transcriptional silencing of transposable elements by inducing local heterochromatin formation. In Drosophila, sumoylation plays an essential role in the assembly of the silencing complex; however, the molecular mechanism by which the sumoylation machinery is recruited to the transposon loci is poorly understood. Here, we show that the Drosophila E3 SUMO-ligase Su(var)2-10 directly binds to the Piwi protein. This interaction is mediated by the SUMO-interacting motif-like (SIM-like) structure in the C-terminal domain of Su(var)2-10. We demonstrated that the SIM-like structure binds to a special region found in the MID domain of the Piwi protein, the structure of which is highly similar to the SIM-binding pocket of SUMO proteins. Abrogation of the Su(var)2-10-binding surface of the Piwi protein resulted in transposon derepression in the ovary of adult flies. Based on our results, we propose a model in which the Piwi protein initiates local sumoylation in the silencing complex by recruiting Su(var)2-10 to the transposon loci.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Female , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Binding Sites , DNA Transposable Elements/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
7.
Appl Microbiol Biotechnol ; 108(1): 101, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229296

ABSTRACT

Enzymatic processes play an increasing role in synthetic organic chemistry which requires the access to a broad and diverse set of enzymes. Metagenome mining is a valuable and efficient way to discover novel enzymes with unique properties for biotechnological applications. Here, we report the discovery and biocatalytic characterization of six novel metagenomic opine dehydrogenases from a hot spring environment (mODHs) (EC 1.5.1.X). These enzymes catalyze the asymmetric reductive amination between an amino acid and a keto acid resulting in opines which have defined biochemical roles and represent promising building blocks for pharmaceutical applications. The newly identified enzymes exhibit unique substrate specificity and higher thermostability compared to known examples. The feature that they preferably utilize negatively charged polar amino acids is so far unprecedented for opine dehydrogenases. We have identified two spatially correlated positions in their active sites that govern this substrate specificity and demonstrated a switch of substrate preference by site-directed mutagenesis. While they still suffer from a relatively narrow substrate scope, their enhanced thermostability and the orthogonality of their substrate preference make them a valuable addition to the toolbox of enzymes for reductive aminations. Importantly, enzymatic reductive aminations with highly polar amines are very rare in the literature. Thus, the preparative-scale enzymatic production, purification, and characterization of three highly functionalized chiral secondary amines lend a special significance to our work in filling this gap. KEY POINTS: • Six new opine dehydrogenases have been discovered from a hot spring metagenome • The newly identified enzymes display a unique substrate scope • Substrate specificity is governed by two correlated active-site residues.


Subject(s)
Amines , Metagenome , Amines/metabolism , Amination , Biocatalysis , Amino Acids/metabolism , Substrate Specificity , Oxidoreductases/metabolism
8.
Sci Rep ; 14(1): 1953, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263343

ABSTRACT

The excision and replication, thus the life cycle of pathogenicity islands in staphylococci are regulated by Stl master repressors that form strong dimers. It has been recently shown that SaPIbov1-Stl dimers are separated during the activation of the Staphylococcus aureus pathogenicity island (SaPI) transcription via helper phage proteins. To understand the mechanism of this regulation, a quantitative analysis of the dimerization characteristics is required. Due to the highly efficient dimerization process, such an analysis has to involve specific solutions that permit relevant experiments to be performed. In the present work, we focused on two staphylococcal Stls associated with high biomedical interest, namely Stl proteins of Staphylococcus aureus bov1 and Staphylococcus hominis ShoCI794_SEPI pathogenicity islands. Exploiting the interactions of these two Stl proteins with their antirepressor-mimicking interaction partners allowed precise determination of the Stl dimerization constant in the subnanomolar range.


Subject(s)
Genomic Islands , Staphylococcal Infections , Humans , Dimerization , Staphylococcus , Pyrophosphatases , Staphylococcus aureus , Polymers
9.
Biomolecules ; 13(12)2023 12 15.
Article in English | MEDLINE | ID: mdl-38136671

ABSTRACT

Cells maintain a fine-tuned balance of deoxyribonucleoside 5'-triphosphates (dNTPs), a crucial factor in preserving genomic integrity. Any alterations in the nucleotide pool's composition or chemical modifications to nucleotides before their incorporation into DNA can lead to increased mutation frequency and DNA damage. In addition to the chemical modification of canonical dNTPs, the cellular de novo dNTP metabolism pathways also produce noncanonical dNTPs. To keep their levels low and prevent them from incorporating into the DNA, these noncanonical dNTPs are removed from the dNTP pool by sanitizing enzymes. In this study, we introduce innovative protocols for the high-throughput fluorescence-based quantification of dUTP, 5-methyl-dCTP, and 5-hydroxymethyl-dCTP. To distinguish between noncanonical dNTPs and their canonical counterparts, specific enzymes capable of hydrolyzing either the canonical or noncanonical dNTP analogs are employed. This approach provides a more precise understanding of the composition and noncanonical constituents of dNTP pools, facilitating a deeper comprehension of DNA metabolism and repair. It is also crucial for accurately interpreting mutational patterns generated through the next-generation sequencing of biological samples.


Subject(s)
Deoxycytosine Nucleotides , Deoxyribonucleotides , Deoxyribonucleotides/metabolism , DNA
10.
J Am Chem Soc ; 145(37): 20302-20310, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37682266

ABSTRACT

Ras GTPases play a crucial role in cell signaling pathways. Mutations of the Ras gene occur in about one third of cancerous cell lines and are often associated with detrimental clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61 cover 97% of oncogenic mutations, which impair the enzymatic activity in Ras. Using QM/MM free energy calculations, we present a two-step mechanism for the GTP hydrolysis catalyzed by the wild-type Ras.GAP complex. We found that the deprotonation of the catalytic water takes place via the Gln61 as a transient Brønsted base. We also determined the reaction profiles for key oncogenic Ras mutants G12D and G12C using QM/MM minimizations, matching the experimentally observed loss of catalytic activity, thereby validating our reaction mechanism. Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras. We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations. This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D, offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.


Subject(s)
Genes, ras , ras Proteins , ras Proteins/genetics , Amino Acid Sequence , Catalysis , Hydrolysis
11.
Biotechnol Bioeng ; 120(10): 2793-2808, 2023 10.
Article in English | MEDLINE | ID: mdl-37334502

ABSTRACT

Opines and opine-type chemicals are valuable natural products with diverse biochemical roles, and potential synthetic building blocks of bioactive compounds. Their synthesis involves reductive amination of ketoacids with amino acids. This transformation has high synthetic potential in producing enantiopure secondary amines. Nature has evolved opine dehydrogenases for this chemistry. To date, only one enzyme has been used as biocatalyst, however, analysis of the available sequence space suggests more enzymes to be exploited in synthetic organic chemistry. This review summarizes the current knowledge of this underexplored enzyme class, highlights key molecular, structural, and catalytic features with the aim to provide a comprehensive general description of opine dehydrogenases, thereby supporting future enzyme discovery and protein engineering studies.


Subject(s)
Amines , Amino Acids , Amines/chemistry , Amination , Amino Acids/metabolism , Keto Acids , Oxidoreductases/metabolism , Biocatalysis , Stereoisomerism
12.
Sci Rep ; 13(1): 7760, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173337

ABSTRACT

In human cells two dUTPase isoforms have been described: one nuclear (DUT-N) and one mitochondrial (DUT-M), with cognate localization signals. In contrast, here we identified two additional isoforms; DUT-3 without any localization signal and DUT-4 with the same nuclear localization signal as DUT-N. Based on an RT-qPCR method for simultaneous isoform-specific quantification we analysed the relative expression patterns in 20 human cell lines of highly different origins. We found that the DUT-N isoform is expressed by far at the highest level, followed by the DUT-M and the DUT-3 isoform. A strong correlation between expression levels of DUT-M and DUT-3 suggests that these two isoforms may share the same promoter. We analysed the effect of serum starvation on the expression of dUTPase isoforms compared to non-treated cells and found that the mRNA levels of DUT-N decreased in A-549 and MDA-MB-231 cells, but not in HeLa cells. Surprisingly, upon serum starvation DUT-M and DUT-3 showed a significant increase in the expression, while the expression level of the DUT-4 isoform did not show any changes. Taken together our results indicate that the cellular dUTPase supply may also be provided in the cytoplasm and starvation stress induced expression changes are cell line dependent.


Subject(s)
Cell Nucleus , Mitochondria , Humans , HeLa Cells , Protein Isoforms/genetics , Protein Isoforms/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
13.
Eur J Med Chem ; 250: 115212, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36842271

ABSTRACT

G12C mutant KRas is considered druggable by allele-specific covalent inhibitors due to the nucleophilic character of the oncogenic mutant cysteine at position 12. Discovery of these inhibitors requires the optimization of both covalent and noncovalent interactions. Here, we report covalent fragment screening of our electrophilic fragment library of diverse non-covalent scaffolds equipped with 40 different electrophilic functionalities to identify fragments as suitable starting points targeting Cys12. Screening the library against KRasG12C using Ellman's free thiol assay, followed by protein NMR and cell viability assays, resulted in two potential inhibitor chemotypes. Characterization of these scaffolds in in vitro cellular- and in vivo xenograft models revealed them as promising starting points for covalent drug discovery programs.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Humans , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
15.
Sci Rep ; 12(1): 19926, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402851

ABSTRACT

Understanding and characterizing the molecular background of the maintenance of genomic integrity might be a major factor in comprehending the exceptional ability of the malaria parasite, Plasmodium falciparum to adapt at a fast pace to antimalarials. A balanced nucleotide pool is an essential factor for high-fidelity replication. The lack of detailed studies on deoxynucleotide-triphosphate (dNTP) pools in various intraerythrocytic stages of Plasmodium falciparum motivated our present study. Here, we focused on the building blocks of DNA and utilized an EvaGreen-based dNTP incorporation assay to successfully measure the temporal dynamics of dNTPs in every intraerythrocytic stage and in drug-treated trophozoites. Our findings show that the ratio of dNTPs in the ring-stage parasites significantly differs from the more mature trophozoite and schizont stages. We were also able to detect dGTP levels that have never been shown before and found it to be the least abundant dNTP in all stages. Treatment with WR99210, a TS-DHFR inhibitor drug, affected not only dTTP, but also dGTP levels, despite its presumed selective action on pyrimidine biosynthesis. Results from our studies might assist in a better understanding of genome integrity mechanisms and may potentially lead to novel drug related aspects involving purine and pyrimidine metabolic targets.


Subject(s)
Antimalarials , Plasmodium falciparum , Animals , Schizonts , Polyphosphates/metabolism , Antimalarials/pharmacology , Antimalarials/metabolism
16.
Sci Rep ; 12(1): 16389, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180456

ABSTRACT

Although malaria has been known for more than 4 thousand years1, it still imposes a global burden with approx. 240 million annual cases2. Improvement in diagnostic techniques is a prerequisite for its global elimination. Despite its main limitations, being time-consuming and subjective, light microscopy on Giemsa-stained blood smears is still the gold-standard diagnostic method used worldwide. Autonomous computer assisted recognition of malaria infected red blood cells (RBCs) using neural networks (NNs) has the potential to overcome these deficiencies, if a fast, high-accuracy detection can be achieved using low computational power and limited sets of microscopy images for training the NN. Here, we report on a novel NN-based scheme that is capable of the high-speed classification of RBCs into four categories-healthy ones and three classes of infected ones according to the parasite age-with an accuracy as high as 98%. Importantly, we observe that a smart reduction of data dimension, using characteristic one-dimensional cross-sections of the RBC images, not only speeds up the classification but also significantly improves its performance with respect to the usual two-dimensional NN schemes. Via comparative studies on RBC images recorded by two additional techniques, fluorescence and atomic force microscopy, we demonstrate that our method is universally applicable for different types of microscopy images. This robustness against imaging platform-specific features is crucial for diagnostic applications. Our approach for the reduction of data dimension could be straightforwardly generalised for the classification of different parasites, cells and other types of objects.


Subject(s)
Image Processing, Computer-Assisted , Malaria , Erythrocytes/parasitology , Humans , Image Processing, Computer-Assisted/methods , Malaria/parasitology , Microscopy/methods , Neural Networks, Computer
17.
Environ Technol ; : 1-12, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35965485

ABSTRACT

Due to the cyclical nature and changing water levels in the sequencing batch reactor (SBR), oxygen diffusion and utilization can be difficult to control particularly in light of the need to conserve the limited quantity of carbon source required to optimize biological nutrient removal. During the fill period, oxygen penetration may be undesirable since heterotrophic and autotrophic organisms cause a reduction in the readily biodegradable carbon source (rbCOD). This carbon source is essential and often limited in the anaerobic and anoxic periods. As a consequence, unwanted oxygen penetration can hinder efficient biological phosphorus and nitrogen removal. The purpose of the present research was to verify the advantage of a floating seal on the continuously moving surface of an SBR reactor to minimize undesirable oxygen penetration. In the floating seal-covered SBR both nitrification and denitrification efficiency proved to be higher due to insulation, and even during wintertime biological phosphorus removal met target removals without chemical dosing. The SVI values in the two SBR trains proved to be close to each other, despite the high difference in chemical dosing. Having experienced the higher efficiency of the seal-covered train, microbiome compositions of the two differently operated systems were investigated to determine potential differences via 16S rRNA gene amplicon sequencing experiments. In the samples taken from the seal-covered system, higher ratios of fermentative bacteria and phosphate accumulating organisms (PAOs) as well as glycogen accumulating organisms (GAOs) could be observed as compared to the samples deriving from the uncovered system.

18.
Chembiochem ; 23(7): e202100708, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35114050

ABSTRACT

Aspartate ammonia-lyases (AALs) catalyze the non-oxidative elimination of ammonia from l-aspartate to give fumarate and ammonia. In this work the AAL coding gene from Pseudomonas fluorescens R124 was identified, isolated, and cloned into the pET-15b expression vector and expressed in E. coli. The purified enzyme (PfAAL) showed optimal activity at pH 8.8, Michaelis-Menten kinetics in the ammonia elimination from l-aspartate, and no strong dependence on divalent metal ions for its activity. The purified PfAAL was covalently immobilized on epoxy-functionalized magnetic nanoparticles (MNP), and effective kinetics of the immobilized PfAAL-MNP was compared to the native solution form. Glycerol addition significantly enhanced the storability of PfAAL-MNP. Inhibiting effect of the growing viscosity (modulated by addition of glycerol or glucose) on the enzymatic activity was observed for the native and immobilized form of PfAAL, as previously described for other free enzymes. The storage stability and recyclability of PfAAL-MNP is promising for further biocatalytic applications.


Subject(s)
Aspartate Ammonia-Lyase , Magnetite Nanoparticles , Pseudomonas fluorescens , Aspartate Ammonia-Lyase/genetics , Aspartate Ammonia-Lyase/metabolism , Enzymes, Immobilized/metabolism , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Kinetics , Magnetite Nanoparticles/chemistry
19.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054819

ABSTRACT

The clonal composition of a malignant tumor strongly depends on cellular dynamics influenced by the asynchronized loss of DNA repair mechanisms. Here, our aim was to identify founder mutations leading to subsequent boosts in mutation load. The overall mutation burden in 591 colorectal cancer tumors was analyzed, including the mutation status of DNA-repair genes. The number of mutations was first determined across all patients and the proportion of genes having mutation in each percentile was ranked. Early mutations in DNA repair genes preceding a mutational expansion were designated as founder mutations. Survival analysis for gene expression was performed using microarray data with available relapse-free survival. Of the 180 genes involved in DNA repair, the top five founder mutations were in PRKDC (n = 31), ATM (n = 26), POLE (n = 18), SRCAP (n = 18), and BRCA2 (n = 15). PRKDC expression was 6.4-fold higher in tumors compared to normal samples, and higher expression led to longer relapse-free survival in 1211 patients (HR = 0.72, p = 4.4 × 10-3). In an experimental setting, the mutational load resulting from UV radiation combined with inhibition of PRKDC was analyzed. Upon treatments, the mutational load exposed a significant two-fold increase. Our results suggest PRKDC as a new key gene driving tumor heterogeneity.


Subject(s)
Colorectal Neoplasms/genetics , DNA-Activated Protein Kinase/genetics , Founder Effect , Mutation/genetics , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line, Tumor , DNA Mutational Analysis , DNA Repair/genetics , Gene Expression Regulation, Neoplastic , Humans , Mutagenesis/genetics , Mutation Rate , Phenotype , Survival Analysis , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...