Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Antimicrob Agents Chemother ; 65(10): e0073721, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34280011

ABSTRACT

Initial dosing and dose adjustment of intravenous tobramycin in children with cystic fibrosis (CF) is challenging. The objectives of this study were to develop nonparametric population pharmacokinetic (PK) models of tobramycin in children with CF to be used for dosage design and model-guided therapeutic drug monitoring. We performed a retrospective analysis of tobramycin PK data in our children's CF center. The Pmetrics package was used for nonparametric population PK analysis and dosing simulations. Both the ratios of maximal concentration to the MIC (Cmax/MIC) and daily area under the concentration-time curve to the MIC (AUC24/MIC) were considered efficacy targets. Trough concentration (Cmin) was considered the safety target. A total of 2,884 tobramycin concentrations collected in 195 patients over 9 years were analyzed. A two-compartment model including total body weight, body surface area, and creatinine clearance as covariates best described the data. A simpler model was also derived for implementation in the BestDose software to perform Bayesian dose adjustment. Both models were externally validated. PK/pharmacodynamics (PD) simulations with the final model suggest that an initial dose of tobramycin of 15 to 17.5 mg/kg/day was necessary to achieve Cmax/MICs of ≥10 for MICs up to 2 mg/liter in most patients. The AUC24/MIC target was associated with higher dosage requirements and higher Cmin. A daily dose of 12.5 mg/kg would optimize both efficacy and safety target attainment. We recommend performing tobramycin therapeutic drug monitoring (TDM), model-based dose adjustment, and MIC determination to individualize intravenous tobramycin therapy in children with CF.


Subject(s)
Cystic Fibrosis , Tobramycin , Anti-Bacterial Agents/therapeutic use , Bayes Theorem , Child , Cystic Fibrosis/drug therapy , Humans , Retrospective Studies
2.
J Pharm Anal ; 9(2): 83-90, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31011464

ABSTRACT

Standard parenteral nutrition solutions are mixtures comprising interacting components that may degrade themselves over time. The objective of this study was to investigate the physicochemical and microbiological stability of a hospital preparation for parenteral nutrition in neonatology. The analyses were performed throughout the storage of the preparations at 2-8 °C (up to 4 months). The extent of stability was based on the determination of amino acids dosage, visual and physicochemical properties (glucose and electrolytes concentrations, pH and osmolality measurements, particle counting) and microbiological analysis (sterility test). A thermal degradation of ascorbic acid was conducted to evaluate the antioxidant properties of the parenteral mixture. Physicochemical and microbiological controls were found to comply with the specifications. Amino acids showed a good stability throughout the 4months storage except for cysteine, which was progressively degraded to cystine, conferring a yellow coloration to parenteral solutions. Parenteral nutrition standards solutions remain stable for 4 months at 2-8 °C, ensuring safe administration in preterm infants.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-744112

ABSTRACT

Standard parenteral nutrition solutions are mixtures comprising interacting components that may de-grade themselves over time. The objective of this study was to investigate the physicochemical and microbiological stability of a hospital preparation for parenteral nutrition in neonatology. The analyses were performed throughout the storage of the preparations at 2–8 °C (up to 4 months). The extent of stability was based on the determination of amino acids dosage, visual and physicochemical properties (glucose and electrolytes concentrations, pH and osmolality measurements, particle counting) and mi-crobiological analysis (sterility test). A thermal degradation of ascorbic acid was conducted to evaluate the antioxidant properties of the parenteral mixture. Physicochemical and microbiological controls were found to comply with the specifications. Amino acids showed a good stability throughout the 4months storage except for cysteine, which was progressively degraded to cystine, conferring a yellow coloration to parenteral solutions. Parenteral nutrition standards solutions remain stable for 4 months at 2–8 °C, ensuring safe administration in preterm infants.

SELECTION OF CITATIONS
SEARCH DETAIL
...