Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501631

ABSTRACT

Three chitosans with different morphologies have been used (commercial chitosan powder, chitosan in film form and chitosan in globular form synthesized by the freeze-dried method) for the synthesis of biochars. The pyrolytic treatment has revealed that the biochar synthesized from the chitosan formed by the freeze-dried method reaches the highest CO2-adsorption capacity (4.11 mmol/g at 0 °C and a pressure of 1 bar) due to this adsorbent is highly microporous. Moreover, this biochar is more resistant to the pyrolytic treatment in comparison to the biochars obtained from the commercial chitosan and chitosan in the form of film. CO2-adsorption studies at different temperatures have also shown that the adsorption capacity diminishes as the adsorption temperature increases, thus suggesting that the adsorption takes place by a physical process.

2.
ACS Appl Mater Interfaces ; 14(9): 11273-11287, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35192337

ABSTRACT

This work deals with the synthesis and characterization of one-dimensional (1D) imidazole-containing etidronates, [M2(ETID)(Im)3]·nH2O (M = Co2+ and Ni2+; n = 0, 1, 3) and [Zn2(ETID)2(H2O)2](Im)2, as well as the corresponding Co2+/Ni2+ solid solutions, to evaluate their properties as multipurpose materials for energy conversion processes. Depending on the water content, metal ions in the isostructural Co2+ and Ni2+ derivatives are octahedrally coordinated (n = 3) or consist of octahedral together with dimeric trigonal bipyramidal (n = 1) or square pyramidal (n = 0) environments. The imidazole molecule acts as a ligand (Co2+, Ni2+ derivatives) or charge-compensating protonated species (Zn2+ derivative). For the latter, the proton conductivity is determined to be ∼6 × 10-4 S·cm-1 at 80 °C and 95% relative humidity (RH). By pyrolyzing in 5%H2-Ar at 700-850 °C, core-shell electrocatalysts consisting of Co2+-, Ni2+-phosphides or Co2+/Ni2+-phosphide solid solution particles embedded in a N-doped carbon graphitic matrix are obtained, which exhibit improved catalytic performances compared to the non-N-doped carbon materials. Co2+ phosphides consist of CoP and Co2P in variable proportions according to the used precursor and pyrolytic conditions. However, the Ni2+ phosphide is composed of Ni2P exclusively at high temperatures. Exploration of the electrochemical activity of these metal phosphides toward the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) reveals that the anhydrous Co2(ETID)(Im)3 pyrolyzed at 800 °C (CoP/Co2P = 80/20 wt %) is the most active trifunctional electrocatalyst, with good integrated capabilities as an anode for overall water splitting (cell voltage of 1.61 V) and potential application in Zn-air batteries. This solid also displays a moderate activity for the HER with an overpotential of 156 mV and a Tafel slope of 79.7 mV·dec-1 in 0.5 M H2SO4. Ni2+- and Co2+/Ni2+-phosphide solid solutions show lower electrochemical performances, which are correlated with the formation of less active crystalline phases.

3.
Dalton Trans ; 50(19): 6539-6548, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33890594

ABSTRACT

We report herein the synthesis, structural characterization and electrocatalytic properties of three new coordination polymers, resulting from the combination of divalent metal (Ca2+, Cd2+ or Co2+) salts with (2-carboxyethyl)(phenyl)phosphinic acid. In addition to the usual hydrothermal procedure, the Co2+ derivative could also be prepared by microwave-assisted synthesis, in much shorter times. The crystal structures were solved by ab initio calculations, from powder diffraction data. Compounds MII[O2P(CH2CH2COOH)(C6H5)]2 {M = Cd (1) or Ca (2)} crystallize in the monoclinic system and display a layered topology, with the phenyl groups pointing toward the interlayer space in a interdigitated fashion. Compound Co2[(O2P(CH2CH2COO)(C6H5)(H2O)]2·2H2O (3) presents a 1D structure composed of zig-zag chains, formed by edge-sharing cobalt octahedra, with the phenyl groups pointing outside. Packing of these chains is favored by hydrogen bond interactions via lattice water molecules. In addition, H-bonds along the chains are established with the participation of the water molecules and the hydrophilic groups from the ligand. However, the solid exhibits a low proton conductivity, attributed to the isolation of the hydrophilic regions caused by the arrangement of hydrophobic phenyl groups. Preliminary studies on the electrocatalytic performance for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have been conducted for compound 3 and its pyrolytic derivatives, which were previously thoroughly characterized. By comparison, another Co2+ phosphinate, 4, obtained by microwave-assisted synthesis, but with distinct stoichiometry and a known structure was also tested. For the OER, the best performance was achieved with a derivative of 3, prepared by heating this compound in N2 at 200 °C. This derivative showed overpotential (339 mV, at a current density of 10 mA cm-2) and Tafel slope (51.7 mV dec-1) values comparable to those of other Co2+ related materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...