Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21261200

ABSTRACT

The SARS-CoV-2 pandemic is a major concern all over the world and, as vaccines became available at the end of 2020, optimal vaccination strategies were subjected to intense investigation. Considering their critical role in reducing disease burden, the increasing demand outpacing production, and that most currently approved vaccines follow a two-dose regimen, the cost-effectiveness of delaying the second dose to increment the coverage of the population receiving the first dose is often debated. Finding the best solution is complex due to the trade-off between vaccinating more people with lower level of protection and guaranteeing higher protection to a fewer number of individuals. Here we present a novel extended age-structured SEIR mathematical model that includes a two-dose vaccination schedule with a between-doses delay modelled through delay differential equations and linear optimization of vaccination rates. Simulations for each time window and for different types of vaccines and production rates were run to find the optimal time window between doses, that is, the one that minimizes the number of deaths. We found that the best strategy depends on an interplay between the vaccine production rate and the relative efficacy of the first dose. In the scenario of low first-dose efficacy, it is always better to apply the second dose as soon as possible, while for high first-dose efficacy, the optimal window depends on the production rate and also on second-dose efficacy provided by each type of vaccine. We also found that the rate of spread of the infection does not affect significantly the thresholds of the optimal window, but is an important factor in the absolute number of total deaths. These conclusions point to the need to carefully take into account both vaccine characteristics and roll-out speed to optimize the outcome of vaccination strategies.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21258403

ABSTRACT

Since the emergence of the novel coronavirus disease, mathematical modelling has become an important tool for planning strategies to combat the pandemic by supporting decision-making and public policies, as well as allowing an assessment of the effect of different intervention scenarios. A proliferation of compartmental models was observed in the mathematical modelling community, aiming to understand and make predictions regarding the spread of COVID-19. Such approach has its own advantages and challenges: while compartmental models are suitable to simulate large populations, the underlying well-mixed population assumption might be problematic when considering non-pharmaceutical interventions (NPIs) which strongly affect the connectivity between individuals in the population. Here we propose a correction to an extended age-structured SEIR framework with dynamic transmission modelled using contact matrices for different settings in Brazil. By assuming that the mitigation strategies for COVID-19 affect the connections between different households, network percolation theory predicts that the connectivity across all households decreases drastically above a certain threshold of removed connections. We incorporated this emergent effect at population level by modulating the home contact matrices through a percolation correction function, with the few remaining parameters fitted to to hospitalisation and mortality data from the city of Sao Paulo. We found significant support for the model with implemented percolation effect using the Akaike Information Criteria (AIC). Besides better agreement to data, this improvement also allows for a more reliable assessment of the impact of NPIs on the epidemiological dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...