Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Protist ; 173(4): 125895, 2022 08.
Article in English | MEDLINE | ID: mdl-35841659

ABSTRACT

Nucleariids are a small group of free-living heterotrophic amoebae. Although these organisms present a variety of cell sizes and cell coverings, they are mostly spherical cells with radiating filopodia, sometimes with several nuclei. Nuclearia, the genus that gives the name to the group, contains species that are opportunistic consumers of detritus, bacteria, and algae. The beautiful Pompholyxophrys is covered with endogenous siliceous pearls. Lithocolla covers itself with sand particles, or otherwise diatom frustules. The tiny Parvularia exclusively feeds on bacteria, and Fonticula is adapted to solid substrates and presents aggregative multicellular stages. Nucleariids belong to the Opisthokonta, which comprise animals, fungi, and their protist relatives, and form the earliest branch in the holomycotan clade (fungi and closest relatives). Hence, they are key for understanding the origin and diversification of Opisthokonta, an eukaryotic supergroup that contains organisms with different feeding modes, life-styles, and cell organizations. In this review, the reader will find an introduction to nucleariids, from their discovery in the 19th century until the most recent studies. It summarizes available information on their morphology, life history, cell organisation, ecology, diversity, systematics and evolution.


Subject(s)
Amoeba , Animals , Biology , Eukaryota , Fungi , Phylogeny
2.
Philos Trans R Soc Lond B Biol Sci ; 374(1786): 20190094, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31587649

ABSTRACT

Nucleariid amoebae (Opisthokonta) have been known since the nineteenth century but their diversity and evolutionary history remain poorly understood. To overcome this limitation, we have obtained genomic and transcriptomic data from three Nuclearia, two Pompholyxophrys and one Lithocolla species using traditional culturing and single-cell genome (SCG) and single-cell transcriptome amplification methods. The phylogeny of the complete 18S rRNA sequences of Pompholyxophrys and Lithocolla confirmed their suggested evolutionary relatedness to nucleariid amoebae, although with moderate support for internal splits. SCG amplification techniques also led to the identification of probable bacterial endosymbionts belonging to Chlamydiales and Rickettsiales in Pompholyxophrys. To improve the phylogenetic framework of nucleariids, we carried out phylogenomic analyses based on two datasets of, respectively, 264 conserved proteins and 74 single-copy protein domains. We obtained full support for the monophyly of the nucleariid amoebae, which comprise two major clades: (i) Parvularia-Fonticula and (ii) Nuclearia with the scaled genera Pompholyxophrys and Lithocolla. Based on these findings, the evolution of some traits of the earliest-diverging lineage of Holomycota can be inferred. Our results suggest that the last common ancestor of nucleariids was a freshwater, bacterivorous, non-flagellated filose and mucilaginous amoeba. From the ancestor, two groups evolved to reach smaller (Parvularia-Fonticula) and larger (Nuclearia and related scaled genera) cell sizes, leading to different ecological specialization. The Lithocolla + Pompholyxophrys clade developed exogenous or endogenous cell coverings from a Nuclearia-like ancestor. This article is part of a discussion meeting issue 'Single cell ecology'.


Subject(s)
Eukaryota/classification , Phylogeny , Single-Cell Analysis/methods
3.
Eur J Protistol ; 71: 125630, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31557698

ABSTRACT

Two brackish water amoebae have been isolated and studied from the benthic biotopes of the Chupa Inlet (Kandalaksha Bay, northwestern Russia). Both strains can be identified as new species of the genus Paramoeba (Amoebozoa, Dactylopodida, Paramoebidae) based on light microscopical characters, structure of microscales on the cell surface and molecular evidence based on the analyses of two genes, nuclear SSU rRNA and mitochondrial cytochrome c oxidase subunit 1 (COI). Paramoeba aparasomata n. sp. is of particular interest because this amoeba is permanently lacking a symbiotic Perkinsela-like organism (PLO) present in other species of Paramoeba and Neoparamoeba. The results obtained show that scaly dactylopodial amoebae lacking PLO are not necessarily members of Korotnevella. In particular, we suggest that Korotnevella nivo Smirnov, 1997, with microscales very similar to those of Paramoeba eilhardi and the species studied here in structure, may be in fact a member of Paramoeba. Molecular data on K. nivo have to be obtained and analysed to test this hypothesis. Based on our new results we emend the diagnosis of the genus Paramoeba to make it more fit to the current phylogenetic conception.


Subject(s)
Amoebozoa/classification , Amoebozoa/cytology , Amoebozoa/genetics , Amoebozoa/parasitology , Electron Transport Complex IV/genetics , Kinetoplastida/physiology , RNA, Ribosomal, 18S/genetics , Russia , Saline Waters , Species Specificity , Symbiosis
4.
Article in English | MEDLINE | ID: mdl-33709902

ABSTRACT

The order Himatismenida (Amoebozoa, Discosea) comprises naked amoebae with an organic coat that is located on the dorsal surface of the cell. The phylogenetic relationships among deeply branching genera of the Himatismenida are unclear, as data on the species diversity of the himatismenid genera is largely restricted to the derived genus Cochliopodium. Here, we describe two new amoeba species that branch at the base of the order Himatismenida, evidenced by SSU rRNA gene and multigene analyses. Among them, a freshwater species Planopodium haveli gen. nov., sp. nov. has a dorsal cell coat consisting of flat, oval scales. This species forms a clade at the base of the Himatismenida, and the previously described Ovalopodium desertum, its closest relative, is transferred into the new genus as Planopodium desertum comb. nov. Although the two species are barely distinguishable by their sequence data, they are clearly distinct in morphology. Using this data, we can report the first evidence of a dorsal cell coat consisting of scales outside of the genus Cochliopodium. The other species has a marine origin and branches deeply, close to the root of the phylogenetic tree of Himatismenida. Based on the morphology of this amoeba, it should be described as Ovalopodium rosalinum sp. nov., a new species of the genus Ovalopodium. Analyses of the phylogenetic relationships and the ultrastructure of the deeply branching himatismenids, together with several of the newly obtained gene sequences of Parvamoeba and Cochliopodium, suggest that some elements of the dorsal cell coat of Ovalopodium may be ancestral for Himatismenida and have been partly retained in various more derived species of this clade, in particular, Cochliopodium gallicum. Although actin and Cox1 gene data do not resolve the higher-level relationships in Himatismenida, they correspond to the grouping of species within most genera.

5.
Commun Biol ; 1: 231, 2018.
Article in English | MEDLINE | ID: mdl-30588510

ABSTRACT

Aphelids are little-known phagotrophic parasites of algae whose life cycle and morphology resemble those of the parasitic rozellids (Cryptomycota, Rozellomycota). In previous phylogenetic analyses of RNA polymerase and rRNA genes, aphelids, rozellids and Microsporidia (parasites of animals) formed a clade, named Opisthosporidia, which appeared as the sister group to Fungi. However, the statistical support for the Opisthosporidia was always moderate. Here, we generated full life-cycle transcriptome data for the aphelid species Paraphelidium tribonemae. In-depth multi-gene phylogenomic analyses using several protein datasets place this aphelid as the closest relative of fungi to the exclusion of rozellids and Microsporidia. In contrast with the comparatively reduced Rozella allomycis genome, we infer a rich, free-living-like aphelid proteome, with a metabolism similar to fungi, including cellulases likely involved in algal cell-wall penetration and enzymes involved in chitin biosynthesis. Our results suggest that fungi evolved from complex aphelid-like ancestors that lost phagotrophy and became osmotrophic.

6.
Kidney Int ; 94(3): 625-631, 2018 09.
Article in English | MEDLINE | ID: mdl-30143069

ABSTRACT

Recent progress in electron microscopy (EM) techniques has opened new pathways to study renal tissue in research and pathology. Modern field emission scanning EM may be utilized to scan thin sections of resin-embedded tissue mounted on a conductive support. Here we sought to achieve automated imaging without the typical limitations of transmission EM with equivalent or superior quality. Extended areas of tissue were either imaged in two (nanotomy) or in three dimensions (volume EM) by serial-section-based array tomography. Single-beam and fast-recording multi-beam field emission scanning EM instruments were compared using perfusion-fixed rodent kidneys. High-resolution scans produced excellent images of tissue, cells, and organelles down to macromolecular complexes. Digital stitching of image tiles in both modes allowed seamless Google Earth-like zooming from overview to regions of interest at the nanoscale. Large datasets were created that can be rapidly shared between scientists of different disciplines or pathologists using open source software. Three-dimensional array tomography of thin sections was followed by segmentation to visualize selected features in a large volume. Furthermore, correlative light-EM enabled the identification of functional information in a structural context. Thus, limitations in biomedical transmission EM can be overcome by introducing field emission scanning EM-based technology that permits high-quality, large field-of-view nanotomy, volume EM, and correlative light-EM modes. Advantages of virtual microscopy in clinical and experimental nephrology are illustrated.


Subject(s)
Electron Microscope Tomography/methods , Imaging, Three-Dimensional/methods , Kidney/ultrastructure , Microscopy, Electron, Scanning/methods , Multimodal Imaging/methods , Animals , Mice , Nephrology/methods , Rats , Software
7.
Protist ; 169(2): 190-205, 2018 04.
Article in English | MEDLINE | ID: mdl-29614434

ABSTRACT

Morphological features are often the only characteristics suitable for identification of taxa in testate amoebae, especially in ecological and palaeoecological studies. However, whereas the morphology of some species is rather stable it may vary considerably in others. Within the order Arcellinida the genus Trigonopyxis with the type species Trigonopyxis arcula is morphologically highly variable. To identify reliable characteristics for morphology-based taxon delineation we investigated variations in shell size, pseudostome diameter and pseudostome form in T. arcula from three different sites of the Ecuadorian Andes, where these characteristics vary even more than previously described. Further, we investigated if morphological characteristics in Trigonopyxis varied with changes in environmental factors. We studied 951 shells of Trigonopyxis collected along an altitudinal gradient with varying abiotic factors. We established a method for characterization of the pseudostome form, which lead to five different morphotypes. Our results suggest that shell size alone is not an appropriate character for taxon delineation but can be used as an indicator for changes in environmental conditions. In contrast, the pseudostome form might be used for taxon delineation, but likely also varies considerably within taxa. Overall, the study provides an overview of the morphological variability of the genus Trigonopyxis.


Subject(s)
Amoebozoa/genetics , Amoeba/classification , Amoeba/genetics , Amoebozoa/classification , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Lobosea/classification , Lobosea/genetics , Phylogeny
8.
J Eukaryot Microbiol ; 65(3): 308-314, 2018 05.
Article in English | MEDLINE | ID: mdl-28983998

ABSTRACT

The genus Diaphoropodon, Archer 1869, comprises filose amoebae with agglutinated tests made of quartz grains, diatom frustules and other particulate materials. The key trait of the genus is a hyaline theca covered with numerous 5- to 10-µm-long, hairlike rods. Based on SSU rDNA phylogeny, we show that Diaphoropodon groups closely to Lecythium, a testate amoeba genus with a flexible but naked theca. Electron microscopic images reveal that the rods of Diaphoropodon are not perforating the test but lie randomly distributed on the surface of the amoeba. Comparing fairly naked cells from our cultures with cells from the environment leads to the conclusion that these rods play a role in agglutinating the material on the test.


Subject(s)
Amoeba/classification , Cell Aggregation/physiology , Cercozoa/classification , Amoeba/genetics , Cercozoa/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Microscopy, Electron , Phylogeny , Polymerase Chain Reaction
9.
Protist ; 168(5): 565-585, 2017 11.
Article in English | MEDLINE | ID: mdl-28961456

ABSTRACT

Precise and sufficiently detailed morphological taxonomy is vital in biology, for example in the accurate interpretation of ecological and palaeoecological datasets, especially in polar regions, where biodiversity is poor. Testate amoebae on the Antarctic Peninsula (AP) are well-documented and variations in their population size have recently been interpreted as a proxy for microbial productivity changes in response to recent regional climate change. AP testate amoeba assemblages are dominated by a small number of globally ubiquitous taxa. We examine morphological variation in Corythion spp. across the AP, finding clear evidence supporting the presence of two morphospecies. Corythion constricta (Certes 1889) was identified on the AP for the first time and has potentially been previously misidentified. Furthermore, a southerly trend of decreasing average test size in Corythion dubium (Taránek 1881) along the AP suggests adaptive polymorphism, although the precise drivers of this remain unclear, with analysis hindered by limited environmental data. Further work into morphological variation in Corythion is needed elsewhere, alongside molecular analyses, to evaluate the potential for (pseudo)cryptic diversity within the genus. We advocate a parsimonious taxonomical approach that recognises genetic diversity but also examines and develops accurate morphological divisions and descriptions suitable for light microscopy-based ecological and palaeoecological studies.


Subject(s)
Biodiversity , Cercozoa/classification , Cercozoa/cytology , Antarctic Regions , Cercozoa/genetics , Cercozoa/ultrastructure , Genetic Variation , Microscopy, Electron, Scanning
10.
Eur J Protistol ; 60: 28-44, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28609684

ABSTRACT

Most foraminifera inhabit marine habitats, but some species of monothalamids have been described from freshwater environments, mainly from Swiss water bodies over 100 years ago. Recent environmental DNA surveys revealed the presence of four major phylogenetic clades of freshwater foraminifera. However, until now only one of them (clade 2) has been associated to a morphologically described taxon-the family Reticulomyxidae. Here, we present morphological and molecular data for the genera representing the three remaining clades. We describe two new agglutinated freshwater genera from China and the Netherlands, Lacogromia and Limnogromia, which represent clades 3 and 4, respectively. We also report the first ribosomal DNA sequences of the genus Lieberkuehnia, which place this genus within clade 1. Our study provides the first morphotaxonomic documentation of molecular clades of freshwater foraminifera, showing that the environmental DNA sequences correspond to the agglutinated monothalamous species, morphologically similar to those described 100 years ago.


Subject(s)
Foraminifera/classification , Phylogeny , China , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Foraminifera/cytology , Foraminifera/genetics , Fresh Water , Netherlands , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...