Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 7747, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35546603

ABSTRACT

Single-cell adhesion plays an essential role in biological and biomedical sciences, but its precise measurement for a large number of cells is still a challenging task. At present, typical force measuring techniques usually offer low throughput, a few cells per day, and therefore are unable to uncover phenomena emerging at the population level. In this work, robotic fluidic force microscopy (FluidFM) was utilized to measure the adhesion parameters of cells in a high-throughput manner to study their population distributions in-depth. The investigated cell type was the genetically engineered HeLa Fucci construct with cell cycle-dependent expression of fluorescent proteins. This feature, combined with the high-throughput measurement made it possible for the first time to characterize the single-cell adhesion distributions at various stages of the cell cycle. It was found that parameters such as single-cell adhesion force and energy follow a lognormal population distribution. Therefore, conclusions based on adhesion data of a low number of cells or treating the population as normally distributed can be misleading. Moreover, we found that the cell area was significantly the smallest, and the area normalized maximal adhesion force was significantly the largest for the colorless cells (the mitotic (M) and early G1 phases). Notably, the parameter characterizing the elongation of the cells until the maximum level of force between the cell and its substratum was also dependent on the cell cycle, which quantity was the smallest for the colorless cells. A novel parameter, named the spring coefficient of the cell, was introduced as the fraction of maximal adhesion force and maximal cell elongation during the mechanical detachment, which was found to be significantly the largest for the colorless cells. Cells in the M phase adhere in atypical way, with so-called reticular adhesions, which are different from canonical focal adhesions. We first revealed that reticular adhesion can exert a higher force per unit area than canonical focal adhesions, and cells in this phase are significantly stiffer. The possible biological consequences of these findings were also discussed, together with the practical relevance of the observed population-level adhesion phenomena.


Subject(s)
Robotic Surgical Procedures , Cell Adhesion , Cell Cycle/genetics , Cell Division , Demography , Focal Adhesions/metabolism , Humans , Microscopy, Atomic Force/methods
2.
Biomedicines ; 9(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34944597

ABSTRACT

Plants and fungi can be used for medical applications because of their accumulation of special bioactive metabolites. These substances might be beneficial to human health, exerting also anti-inflammatory and anticancer (antiproliferative) effects. We propose that they are mediated by influencing cellular adhesion and migration via various signaling pathways and by directly inactivating key cell adhesion surface receptor sites. The evidence for this proposition is reviewed (by summarizing the natural metabolites and their effects influencing cellular adhesion and migration), along with the classical measuring techniques used to gain such evidence. We systematize existing knowledge concerning the mechanisms of how natural metabolites affect adhesion and movement, and their role in gene expression as well. We conclude by highlighting the possibilities to screen natural compounds faster and more easily by applying new label-free methods, which also enable a far greater degree of quantification than the conventional methods used hitherto. We have systematically classified recent studies regarding the effects of natural compounds on cellular adhesion and movement, characterizing the active substances according to their organismal origin (plants, animals or fungi). Finally, we also summarize the results of recent studies and experiments on SARS-CoV-2 treatments by natural extracts affecting mainly the adhesion and entry of the virus.

SELECTION OF CITATIONS
SEARCH DETAIL
...