Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Curr Pharm Biotechnol ; 23(3): 420-443, 2022.
Article in English | MEDLINE | ID: mdl-34355680

ABSTRACT

Nanotechnology is a cutting-edge area with numerous industrial applications. Nanoparticles are structures that have dimensions ranging from 1 - 100 nm, which significantly exhibit different mechanical, optical, electrical, and chemical properties when compared with their larger counterparts. Synthetic routes that use natural sources, such as plant extracts, honey, and microorganisms, are environmentally friendly and low-cost methods that can be used to obtain nanoparticles. These methods of synthesis generate products that are more stable and less toxic than those obtained using conventional methods. Nanoparticles formed by titanium dioxide, zinc oxide, silver, gold, and copper, as well as cellulose nanocrystals, are among the nanostructures obtained by green synthesis that have shown interesting applications in several technological industries. Several analytical techniques have also been used to analyze the size, morphology, hydrodynamics, diameter, and chemical functional groups involved in the stabilization of the nanoparticles as well as to quantify and evaluate their formation. Despite their pharmaceutical, biotechnological, cosmetic, and food applications, studies have detected their harmful effects on human health and the environment, and thus, caution must be taken in uses involving living organisms. The present review aims to present an overview of the applications, the structural properties, and the green synthesis methods that are used to obtain nanoparticles, and special attention is given to those obtained from metal ions. The review also presents the analytical methods used to analyze, quantify, and characterize these nanostructures.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Gold , Humans , Metal Nanoparticles/toxicity , Nanotechnology , Plant Extracts , Silver
2.
Acta amaz ; 48(2): 158-167, Apr.-June 2018. tab, graf
Article in Portuguese | LILACS | ID: biblio-885991

ABSTRACT

RESUMO O mel é um produto natural que apresenta várias propriedades benéficas para a saúde, tais como atividade antinflamatória, antioxidante e antimicrobiana, as quais dependem de sua composição. Neste contexto, as propriedades físico-químicas (cor, pH, conteúdo de cinzas, umidade, açúcares e compostos fenólicos totais) e a atividade antioxidadente (capacidade de remoção do radical DPPH) de méis de abelhas Apis mellifera de Santarém, na principal região de produção de mel na Amazônia Oriental, Brasil, foram avaliadas. A maioria das amostras teve cor escura e apresentaram-se ácidas. Os teores de cinzas e a umidade variaram de 0,112 a 0,318 e de 14,751 a 17,514, respectivamente. O teor de açúcares redutores vairou entre 62,873 e 91,563%. O teor total de compostos fenólicos foi mais elevado que os já reportados na literatura, variando entre 15,22 e 16,51 mg g−1 e 17,70 e 18,94 mg g−1 para amostras de mel protegidas e expostas à radiação UV, respectivamente. A quercetina foi encontrada apenas no mel que foi protegido da luz, com teores variando entre 0,24 e 0,43 mg g−1. A ausência de quercetina nas amostras de mel expostas à luz sugere que a radiação UV pode ter degradado esse composto. Todas as amostras apresentaram máxima capacidade de remover o radical DPPH próxima a 50%. Houve correlação inversa entre a cor e o pH, cinzas, açúcares redutores e teor de umidade, e correlação positiva entre a cor e o teor de composto fenólicos e a atividade antioxidante.


ABSTRACT Honey is a natural product that has several beneficial properties for health, such as anti-inflammatory, antioxidant and antimicrobial activities, which depend on its composition. In this context, physicochemical properties (colour, pH, ash, moisture, sugars, and total phenolic contents) and antioxidant activity (DPPH radical scavenging ability) of Apis mellifera honeys from Santarém, the main honey production area in the eastern Amazon region, were evaluated. Most samples were dark in colour and acidic. The ash and moisture contents ranged from 0.112 to 0.318 and from 14.751 to 17.514, respectively. The reducing sugars content was 62.873-91.563%. The total amount of phenolic compounds was higher than normally reported, ranging between 15.22 and 16.51 mg g−1 and 17.70 and 18.94 mg g−1, for honey after and before exposure to light, respectively. Quercetin was found only in honey that had been protected from light, with values ranging from 0.24 to 0.43 mg g-1. The absence of quercetin in the samples of honey exposed to light suggests that UV radiation has degraded this compound. All samples presented maximum radical scavenging capacity close to 50%. Our results showed inverse correlations between the colour and pH, ash, reducing sugars, and moisture content, and positive correlations between the colour and the concentration of phenolic compounds, and antioxidant activity.


Subject(s)
Quercetin , Flavonoids
SELECTION OF CITATIONS
SEARCH DETAIL
...