Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Metab Brain Dis ; 35(4): 589-600, 2020 04.
Article in English | MEDLINE | ID: mdl-32048104

ABSTRACT

The present study evaluated the anti-amnesic activity of 1-(7-chloroquinolin-4-yl)-5-methyl-N-phenyl-1H-1,2,3-triazole-4-carboxamide (QTCA-1) against scopolamine (SCO)-induced amnesia in mice. It was evaluated cholinergic dysfunction, oxidative stress and Na+/K+-ATPase activity in cerebral cortex and hippocampus of mice. Male Swiss mice were treated with QTCA-1 (10 mg/kg, intragastrically (i.g.), daily) for nine days. Thirty minutes after the treatment with compound, the animals received a injection of SCO (0.4 mg/kg, intraperitoneally (i.p.)). Mice were submitted to the behavioral tasks 30 min after injection of SCO (Barnes maze, open-field, object recognition and location, and step-down inhibitory avoidance tasks) during nine days. In day 9, cerebral cortex and hippocampus of mice were removed to determine the thiobarbituric acid reactive species (TBARS) levels, and catalase (CAT), Na+/K+-ATPase and acetylcholinesterase (AChE) activities. SCO caused amnesia in mice for changing in step-down inhibitory avoidance, Barnes maze, and object recognition and object location tasks. QTCA-1 treatment attenuated the behavioral changes caused by SCO. Moreover, SCO increased AChE and CAT activities, decreased Na+/K+-ATPase activity and increased TBARS levels in the cerebral structures of mice. QTCA-1 protected against these brain changes. In conclusion, QTCA-1 had anti-amnesic action in the experimental model used in the present study, through the anticholinesterase effect, modulation of Na+/K+-ATPase activity and antioxidant action.


Subject(s)
Amnesia/drug therapy , Antioxidants/pharmacology , Cerebral Cortex/drug effects , Hippocampus/drug effects , Memory/drug effects , Oxidative Stress/drug effects , Quinolines/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Acetylcholinesterase/metabolism , Amnesia/chemically induced , Amnesia/metabolism , Animals , Avoidance Learning/drug effects , Cerebral Cortex/metabolism , Disease Models, Animal , Hippocampus/metabolism , Maze Learning/drug effects , Mice , Quinolines/therapeutic use , Scopolamine
2.
Can J Physiol Pharmacol ; 98(5): 304-313, 2020 May.
Article in English | MEDLINE | ID: mdl-31821013

ABSTRACT

The present study evaluated the in vitro acetylcholinesterase (AChE) inhibitor activity of two new selanyl amide derivatives in cerebral structures of mice. Our results demonstrated that N-(2-(3-(phenylselanyl)propoxy)phenyl)furan-2-carboxamide (1) and N-(2-(3-(phenylselanyl)propoxy)phenyl)thiophene-2-carboxamide (2) inhibited the in vitro AChE activity in mice. Another objective was to assess the effect of the best AChE inhibitor in an amnesic model induced by scopolamine (SCO) in male Swiss mice. The involvement of AChE activity and lipid peroxidation in the cerebral structures was investigated. Our results showed that compound 1 (10 mg/kg, intragastrically) attenuated the latency to find the escape box and the number of holes visited in the Barnes maze task, without altering the locomotor and exploratory activities in an open-field test. Compound 1 protected against increasing in lipid peroxidation levels and AChE activity caused by SCO in the cerebral cortex and hippocampus of mice. In conclusion, the present study evidenced the in vitro anticholinesterase effect of two new selanyl amide derivatives in the cerebral structures of mice. Moreover, compound 1, a selanyl amide derivative containing a furan ring, demonstrated antiamnesic action due to its antioxidant and anticholinesterase activities in cerebral structures.


Subject(s)
Amides/chemistry , Amides/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cognitive Dysfunction/drug therapy , Memory Disorders/drug therapy , Amides/therapeutic use , Animals , Cholinesterase Inhibitors/therapeutic use , Cognitive Dysfunction/physiopathology , Male , Memory Disorders/physiopathology , Mice , Open Field Test/drug effects
3.
Pharmacol Rep ; 71(6): 1201-1209, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31669884

ABSTRACT

BACKGROUND: The present study evaluated the antioxidant, antinociceptive and anti-edematogenic effects of Se-[(2,2-dimethyl-1,3-dioxolan-4-yl) methyl] 4-chlorobenzoselenolate (Se-DMC). METHODS: In vitro experiments were carried out to evaluate Se-DMC antioxidant action. Thiobarbituric acid reactive species levels, 2,2'-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-thylbenzthiazoline-6-sulfonic acid) radicals scavenging and glutathione S-transferase-like activity were determined. Male Swiss mice were orally pretreated with Se-DMC (1, 10 and 50 mg/kg), meloxicam (50 mg/kg) or vehicle 30 min prior to acetic acid or glutamate test. To extend our knowledge of the pharmacological properties of this compound, it was tested in an inflammatory model through ear edema induced by croton oil. The contribution of glutamatergic and serotonergic systems was also investigated. RESULTS: In vitro experiments revealed that Se-DMC exerts antioxidant activity. Nociception induced by glutamate or acetic acid was reduced by Se-DMC or meloxicam. Se-DMC diminished the paw edema formation induced by glutamate, while meloxicam did not show any effect. Se-DMC and meloxicam decreased the ear edema formation and protected against the increase in myeloperoxidase activity in mice ear induced by croton oil. The pretreatment of animals with MK-801 did not alter antinociception caused by Se-DMC in the glutamate test. The antinociceptive effect exerted by Se-DMC in the acetic acid test was reverted by the pretreatment of mice with different serotonergic antagonists (WAY100635, ketanserin and pindolol). CONCLUSIONS: Data presented here showed that the modulation of serotonergic and glutamatergic systems and the anti-inflammatory and antioxidant actions could contribute to the antinociceptive and anti-edematogenic effects of Se-DMC and it supported the therapeutic potential of this compound.


Subject(s)
Analgesics/pharmacology , Nociception/drug effects , Pain Measurement/drug effects , Selenium/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Disease Models, Animal , Edema/drug therapy , Edema/metabolism , Glutamic Acid/metabolism , Male , Mice
4.
Chem Biol Interact ; 311: 108790, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31400342

ABSTRACT

Preclinical assays play a key role in research in research on the neurobiology of pain and the development of novel analgesics. Drugs available for the treatment of inflammatory pain are not fully effective and show adverse effects. Thus, we investigated the antinociceptive, anti-inflammatory and anti-hyperalgesic effects of bis(3-amino-2-pyridine) diselenide (BAPD), a new analgesic drug prototype. BAPD effects were investigated using nociception models induced by chemical (glutamate), immunologic (Freund's Complete Adjuvant - CFA) and thermal stimuli in Swiss mice. Mice were orally (p.o.) treated with BAPD (0.1-50 mg/kg) 30 min prior to the glutamate and hot-plate tests and a time-course (0.5 up to 8 h) of the antinociceptive effect of BAPD (50 mg/kg, p. o.) was evaluated in a CFA model. In the CFA model, BAPD effects on cyclooxygenase-2 (COX-2), tumor necrosis factor (TNFα) and interferon-γ (INF-γ) expression, myeloperoxidase (MPO) activity, oxidative (2,2'-Azino-bis-3-ethylbenzothiazoline 6-sulfonic acid and 2,2-diphe- nyl-1-picrylhydrazyl levels) and histological parameters were evaluated. The safety of the compound (50 and 300 mg/kg, p. o.) was verified for 72 h. BAPD reduced the licking time induced by glutamate and caused an increase in latency response to thermal stimulus. Naloxone reversed the antinociceptive effect of BAPD. Paw edema formation induced by glutamate or CFA injection was reduced by BAPD. Mechanical hyperalgesia induced by CFA was attenuated by BAPD. BAPD did not protect against the increase in MPO activity and decrease of the 2,2'-Azino-bis-3-ethylbenzothiazoline 6-sulfonic acid and 2,2-diphe- nyl-1-picrylhydrazyl levels induced by CFA. BAPD protected against histological alterations and reduction on the levels of gene expression COX-2 and INF-γ in the paw of mice exposed to CFA. BAPD was safe at the doses and time evaluated. BAPD exerts acute antinociceptive, anti-inflammatory and anti-hyperalgesic actions, suggesting that it may represent an alternative in the future development of new therapeutic strategies.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 2/metabolism , Interferon-gamma/metabolism , Nociception/drug effects , Receptors, Opioid/metabolism , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Cyclooxygenase 2/genetics , Edema/drug therapy , Edema/pathology , Exploratory Behavior/drug effects , Foot/pathology , Gene Expression Regulation/drug effects , Glutamic Acid/pharmacology , Interferon-gamma/genetics , Liver/drug effects , Liver/metabolism , Locomotion/drug effects , Male , Mice , Pain/drug therapy , Pain/pathology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Opioid/genetics , Toxicity Tests, Acute , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
5.
Mol Neurobiol ; 56(9): 6398-6408, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30805835

ABSTRACT

This study investigated the effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) to restore the cognitive impairment caused by aging in male Wistar rats. Moreover, modulation of neuroplasticity markers, acetylcholinesterase (AChE) activity, and cholesterol levels was performed. Aged rats were intragastrically treated with 4-PSQ (5 mg/kg) for 7 days. Animals were tested in behavioral tasks, and then plasma (to determine cholesterol levels), hippocampus, and cerebral cortex (to determine neural cell adhesion molecule (NCAM) and polysialyltransferase (PST) levels, and AChE activity) were removed. Our findings demonstrated that treatment of aged rats with 4-PSQ restored short-term and long-term memories in the object recognition tests. 4-PSQ treatment did not restore exploratory activity (rearings) but partially restored locomotor activity (crossings) reduced by aging in the open-field test. Moreover, the compound restored the reduction in the NCAM and PST levels, and AChE activity in cerebral structures, as well as the increase in the plasma cholesterol levels, caused by aging in rats. In conclusion, 4-PSQ restored cognitive impairment caused by aging in rats by modulating synaptic plasticity, cholinergic system, and cholesterol levels.


Subject(s)
Acetylcholinesterase/metabolism , Cholesterol/metabolism , Memory/drug effects , Neuronal Plasticity/drug effects , Organoselenium Compounds/pharmacology , Quinolines/pharmacology , Animals , Cholesterol/blood , Locomotion/drug effects , Male , Neural Cell Adhesion Molecules/metabolism , Organoselenium Compounds/chemistry , Quinolines/chemistry , Rats, Wistar , Sialyltransferases/metabolism
6.
Int J Pharm ; 552(1-2): 340-351, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30300708

ABSTRACT

Wound healing can be a painful and time-consuming process in patients with diabetes mellitus. In light of this, the use of wound healing devices could help to accelerate this process. Here, cellulose-based films loaded with vitamin C (VitC) and/or propolis (Prop), two natural compounds with attractive properties were engineered. The starting materials and the cellulose-based films were characterized in detail. As assessed, vitamin C can be released from the Cel-PVA/VitC and Cel-PVA/VitC/Prop films in a controlled manner. In vitro antibacterial activity studies showed a reduction of bacteria counts (Escherichia coli and Staphylococcus aureus) after Cel-PVA/VitC, Cel-PVA/Prop, and Cel-PVA/VitC/Prop treatments. Moreover, we examined the antibacterial and wound healing properties of the cellulose-based films in a streptozotocin (STZ)-induced diabetic animal model. Diabetic mice exhibited impaired wound healing while the Cel-PVA/VitC/Prop treatment increased the wound closure. A marked reduction in bacterial counts present in the wound environment of diabetic mice was observed after Cel-PVA/VitC, Cel-PVA/Prop and Cel-PVA/VitC/Prop treatment. Histological analysis demonstrated that the non-treated diabetic mice group did not exhibit adequate wound healing while the treated group with Cel-PVA/VitC and Cel-PVA/VitC/Prop films presented good cicatricial response. Furthermore, these novel eco-friendly films may represent a new therapeutic approach to accelerate diabetic wound healing.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Antioxidants/administration & dosage , Ascorbic Acid/administration & dosage , Cellulose/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Drug Delivery Systems , Propolis/administration & dosage , Wound Healing/drug effects , Animals , Escherichia coli/drug effects , Escherichia coli/growth & development , Male , Mice , Oryza , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
7.
J Pharm Pharmacol ; 70(12): 1723-1732, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30251258

ABSTRACT

OBJECTIVES: A microemulsion-based delivery system was designed to improve vitamin E (VE) properties, and its antinociceptive, antioxidant, antidepressant- and anxiolytic-like activities in mice were evaluated. METHODS: Male Swiss mice received, by intragastric route, canola oil (20 ml/kg), blank microemulsion (B-ME) (20 ml/kg), VE free (VE-F) (200 mg/kg) or VE microemulsion (VE-ME) (200 mg/kg). In acute treatment, a single dose of treatments was administrated and 30 min after behavioural tests were performed. In the subchronic treatment, mice received such treatments, once a day, for 8 days. On the eighth day, behavioural tests were performed. KEY FINDINGS: In the subchronic treatment, VE-ME increased entries and spent time in the open arms in the elevated plus-maze test and decreased the immobility time in the tail suspension test, but no change was found after acute treatment. Acute and subchronic treatments with VE-ME increased response latency to thermal stimulus in the hot-plate test. VE-ME decreased the thiobarbituric acid reactive species levels in the acute and subchronic protocols. Additionally, in subchronic treatment, VE-ME increased renal catalase activity, but VE-F reduced its activity. CONCLUSIONS: Vitamin E-microemulsions showed antioxidant, antinociceptive, antidepressant- and anxiolytic-like actions; thus, ME-based delivery improved pharmacological properties of VE.


Subject(s)
Analgesics/pharmacology , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Antioxidants/pharmacology , Drug Delivery Systems , Vitamin E/pharmacology , Analgesics/administration & dosage , Animals , Anti-Anxiety Agents/administration & dosage , Antidepressive Agents/administration & dosage , Antioxidants/administration & dosage , Behavior, Animal/drug effects , Emulsions , Male , Mice , Vitamin E/administration & dosage
8.
Biomed Pharmacother ; 105: 1006-1014, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30021335

ABSTRACT

This study investigated the effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) at a dose of 1 mg/kg in memory impairment and anxiety in an Alzheimer's disease (AD) model induced by amyloid ß-peptide (Aß) (fragment 25-35) in mice. The involvement of acetylcholinesterase (AChE) activity and lipid peroxidation in hippocampus and cerebral cortex was evaluated. Male Swiss mice were pretreated with 4-PSQ (1 mg/kg, intragastrically (i.g.), daily) for fourteen days. Thirty minutes after the first treatment with 4-PSQ, the animals received a single injection of Aß (3 nmol/3 µl/per site, intracerebroventricular (i.c.v.)). Mice were submitted to the behavioral tasks (open-field, elevated plus maze, Barnes maze, object recognition and location, and step-down inhibitory avoidance tests) from the fifth day onwards. On the fifteenth day, blood was removed for analysis of biochemical markers (glucose, triglycerides, urea, aspartate (AST) and alanine (ALT) aminotrasferases), and cerebral cortex and hippocampus for determination of AChE activity and thiobarbituric acid reactive species (TBARS) levels. Aß caused memory impairment, anxiogenic behavior, increased AChE activity in the cerebral structures and TBARS levels in the cerebral cortex. 4-PSQ was effective to protect against behavioral changes, AChE activity and TBARS levels. In conclusion, 4-PSQ protected against learning and memory impairment and anxiety in a mouse model of AD induced by Aß, and anticholinesterase and antioxidant actions are involved in the pharmacological effect of the compound.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/toxicity , Anxiety/prevention & control , Cognitive Dysfunction/prevention & control , Disease Models, Animal , Peptide Fragments/toxicity , Quinolines/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Animals , Anxiety/chemically induced , Anxiety/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Locomotion/drug effects , Locomotion/physiology , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Quinolines/pharmacology , Random Allocation
9.
Chem Biol Interact ; 282: 7-12, 2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29317251

ABSTRACT

The quinolone compounds have been reported for many biological properties, especially as potent antioxidants. This study investigated the antioxidant effect of 7-chloro-4-phenylselenyl-quinoline (PSQ), a quinolone derivative with organoselenium group, against oxidative stress induced by sodium nitroprusside (SNP) in brains of mice. A second objective was to verify the importance of phenylselenyl group presents at position 4 of the quinoline structure to antioxidant effect of compound. So, it was compared the antioxidant effect of PSQ with a quinoline without organoseleniun group (7-chloroquinoline [QN]). Swiss mice were used and received SNP (0.335 µmol/site, intracerebroventricular) 30 min after treatment with PSQ or QN, at the doses of 50 mg/kg (intragastrically). After 1 h, animals were sacrificed and the brains were removed to biochemistry analysis. Thiobarbituric acid reactive species (TBARS), protein carbonyl (PC) and non-protein thiol (NPSH) levels, as well as catalase (CAT), glutathione S transferase (GST) and δ -aminolevulinic acid (δ-ALA-D) activities were determined. SNP increased TBARS and PC levels, and reduced the enzymatic (CAT and GST activity) and non-enzymatic (NPSH levels) antioxidant defenses and inhibited the δ-ALA-D activity. PSQ avoided the increase in the lipid peroxidation and PC levels, as well as the decrease in the NPSH levels, CAT, GST and δ-ALA-D activities QN partially avoided the increase in lipid peroxidation, but it not protected against alterations induced by SNP. In conclusion, phenylselenyl group present in quinoline structure is critical for antioxidant activity of PSQ.


Subject(s)
Antioxidants/pharmacology , Organoselenium Compounds/pharmacology , Quinolines/pharmacology , Aminolevulinic Acid/metabolism , Animals , Brain/drug effects , Brain/metabolism , Catalase/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Male , Mice , Oxidative Stress/drug effects , Sulfhydryl Compounds/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
10.
Regul Toxicol Pharmacol ; 90: 72-77, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28842336

ABSTRACT

The present study was designed to examine the antinociceptive and anti-inflammatory effects of 7-chloro-4-phenylsulfonyl quinoline (PSOQ). Mice were orally (p.o) pretreated with PSOQ (0.01-10 mg/kg), meloxicam (10 mg/kg), 30 min prior to the acetic acid, hot-plate and open field tests. PSOQ reduced abdominal writhing induced by acetic acid, while meloxicam presented no effect. The latency time in the hot-plate test and locomotor/exploratory activities in the open field test were not altered by treatments. In order to evaluate the gastric tolerability after oral administration of PSOQ or meloxicam (10 mg/kg), mice were fasted for 18 h prior to drug exposure. Four hours later, the development of lesions was assessed. PSOQ and meloxicam did not induce ulcer at the dose and time evaluated. Indeed, anti-inflammatory and anti-edematogenic properties of PSOQ were investigated. For this, animals were pretreated with PSOQ (0.01-50 mg/kg; p.o.), meloxicam (50 mg/kg; p.o.), 30 min prior to croton oil application. PSOQ and meloxicam (50 mg/kg) diminished the edema formation and myeloperoxidase activity induced by croton oil in the ear tissue. Taken together these data demonstrated that PSOQ exerts acute anti-inflammatory and antinociceptive actions, suggesting that it may represent an alternative in the development of future new therapeutic strategies.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Nociception/drug effects , Quinolines/pharmacology , Acetic Acid/toxicity , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Croton Oil/toxicity , Edema/chemically induced , Edema/drug therapy , Hot Temperature/adverse effects , Humans , Male , Meloxicam , Mice , Pain/drug therapy , Pain/etiology , Quinolines/chemistry , Quinolines/therapeutic use , Stomach Ulcer/chemically induced , Thiazines/pharmacology , Thiazoles/pharmacology
11.
Metab Brain Dis ; 32(6): 1919-1927, 2017 12.
Article in English | MEDLINE | ID: mdl-28795281

ABSTRACT

The aim of the present study was to investigate the effects of SCH58261, a selective adenosine A2A receptor antagonist, on striatal toxicity induced by 3-nitropropionic acid (3-NP) in rats. The experimental protocol consisted of 10 administrations (once a day) of SCH58261 (0.01 or 0.05 mg/kg/day, intraperitoneal, i.p.). From 7th to 10th day, 3-NP (20 mg/kg/day, i.p.) was injected 1 h after SCH58261 administration. Twenty-four hours after the last 3-NP injection, the body weight gain, locomotor activity (open-field test), motor coordination (rotarod test), striatal succinate dehydrogenase (SDH) activity and parameters linked to striatal oxidative status were evaluated in rats. The marked body weight loss resulting from 3-NP injections in rats was partially protected by SCH 58261 at both doses. SCH 58261 at the highest dose was effective against impairments on motor coordination and locomotor activity induced by 3-NP. SCH 58261 was unable to restore the inhibition of SDH activity caused by 3-NP. In addition, the increase in striatal reactive species (RS) levels, depletion of reduced glutathione (GSH) content and stimulation of glutathione reductase (GR) activity provoked by 3-NP injections were alleviated by both doses of SCH 58261. The highest dose of SCH 58261 was also effective in attenuating the increase of protein carbonyl levels as well as the inhibition of glutathione peroxidase (GPx) activity in rats exposed to 3-NP. Our results revealed that reduction of oxidative stress in rat striatum by adenosine A2A receptor antagonism contributes for alleviating 3-NP-induced toxicity.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Corpus Striatum/drug effects , Neuroprotective Agents/pharmacology , Nitro Compounds/pharmacology , Oxidative Stress/drug effects , Propionates/pharmacology , Pyrimidines/pharmacology , Triazoles/pharmacology , Animals , Corpus Striatum/metabolism , Glutathione/metabolism , Male , Motor Activity/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Rotarod Performance Test
12.
An Acad Bras Cienc ; 89(1 Suppl 0): 457-467, 2017 May.
Article in English | MEDLINE | ID: mdl-28538816

ABSTRACT

The present study investigated the antioxidant effect of a new class of quinoline derivatives (a-d) on assays in vitro. Lipid peroxidation, thiol peroxidase-like and free radical scavenging activities were determined to evaluate antioxidant activity of compounds. Thiol oxidase-like and δ-aminolevulinate dehydratase activities were performed as a toxicological parameter. A second objective of this study was to evaluate the in vivo antinociceptive effect of the compound with better antioxidant effect and without toxic effects in a model of nociception induced by formalin in mice. In liver, at 100 µM, compound a reduced the lipid peroxidation to the control levels, while compounds c and d partially reduced it. In brain, only compound d partially reduced the lipid peroxidation at 50 and 100 µM. Compound b did not have an effect on the lipid peroxidation. Thiol peroxidase-like and free radical scavenging activities are not involved in the antioxidant mechanisms of these compounds. Compounds did not present thiol oxidase-like activity and effect on the δ-aminolevulinate dehydratase. In vivo experiments showed that compound a caused an inhibition of licking time in the first and second phases, and edema formation induced by formalin. In conclusion, quinoline derivative without selenium presented better in vitro antioxidant effect and in vivo antinociceptive activity.


Subject(s)
Analgesics/pharmacology , Antioxidants/pharmacology , Oxidative Stress/drug effects , Quinolines/pharmacology , Selenium/pharmacology , Animals , Disease Models, Animal , Free Radical Scavengers , Male , Mice , Oxidation-Reduction , Oxidoreductases Acting on Sulfur Group Donors/pharmacology , Pain Measurement , Porphobilinogen Synthase/pharmacology , Quinolines/chemistry
13.
An. acad. bras. ciênc ; 89(1,supl): 457-467, May. 2017. graf
Article in English | LILACS | ID: biblio-886663

ABSTRACT

ABSTRACT The present study investigated the antioxidant effect of a new class of quinoline derivatives (a-d) on assays in vitro. Lipid peroxidation, thiol peroxidase-like and free radical scavenging activities were determined to evaluate antioxidant activity of compounds. Thiol oxidase-like and δ-aminolevulinate dehydratase activities were performed as a toxicological parameter. A second objective of this study was to evaluate the in vivo antinociceptive effect of the compound with better antioxidant effect and without toxic effects in a model of nociception induced by formalin in mice. In liver, at 100 µM, compound a reduced the lipid peroxidation to the control levels, while compounds c and d partially reduced it. In brain, only compound d partially reduced the lipid peroxidation at 50 and 100 µM. Compound b did not have an effect on the lipid peroxidation. Thiol peroxidase-like and free radical scavenging activities are not involved in the antioxidant mechanisms of these compounds. Compounds did not present thiol oxidase-like activity and effect on the δ-aminolevulinate dehydratase. In vivo experiments showed that compound a caused an inhibition of licking time in the first and second phases, and edema formation induced by formalin. In conclusion, quinoline derivative without selenium presented better in vitro antioxidant effect and in vivo antinociceptive activity.


Subject(s)
Animals , Male , Rats , Quinolines/pharmacology , Selenium/pharmacology , Oxidative Stress/drug effects , Analgesics/pharmacology , Antioxidants/pharmacology , Oxidation-Reduction , Quinolines/chemistry , Pain Measurement , Free Radical Scavengers , Disease Models, Animal , Oxidoreductases Acting on Sulfur Group Donors/pharmacology , Porphobilinogen Synthase/pharmacology
14.
Regul Toxicol Pharmacol ; 81: 316-321, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27664321

ABSTRACT

This study determined whether meloxicam in nanocapsules modifies stomach and liver damage caused by free meloxicam in mice. Male Swiss mice were treated with blank nanocapsules or meloxicam in nanocapsules or free meloxicam (10 mg/kg, intragastrically, daily for five days). On the seventh day, blood was collected to determine biochemical markers (glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, total bilirubin, unconjugated bilirubin, albumin and alkaline phosphatase). Stomachs and livers were removed for histological analysis. There was no significant difference in the biochemical markers in the plasma of mice. Meloxicam in nanocapsules did not have an ulcerogenic potential in the stomach or cause lipid peroxidation in the stomach and liver. Free meloxicam increased the ulcerogenic potential in the stomach and lipid peroxidation in the stomach and liver. Meloxicam in nanocapsules caused less histological changes than free meloxicam. In conclusion, polymeric nanocapsules can represent a technological alternative to reduce the toxicity caused by meloxicam.


Subject(s)
Caproates/pharmacology , Lactones/pharmacology , Liver/drug effects , Nanocapsules/chemistry , Polysorbates/pharmacology , Stomach/drug effects , Thiazines/antagonists & inhibitors , Thiazoles/antagonists & inhibitors , Animals , Body Weight/drug effects , Caproates/administration & dosage , Caproates/chemistry , Dose-Response Relationship, Drug , Gastric Mucosa/metabolism , Lactones/administration & dosage , Lactones/chemistry , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Male , Meloxicam , Mice , Nanocapsules/administration & dosage , Organ Size/drug effects , Polysorbates/administration & dosage , Polysorbates/chemistry , Stomach/pathology , Structure-Activity Relationship , Thiazines/administration & dosage , Thiazines/toxicity , Thiazoles/administration & dosage , Thiazoles/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...