Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(38): eadh1655, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37738334

ABSTRACT

Intranasal vaccination represents a promising approach for preventing disease caused by respiratory pathogens by eliciting a mucosal immune response in the respiratory tract that may act as an early barrier to infection and transmission. This study investigated immunogenicity and protective efficacy of intranasally administered messenger RNA (mRNA)-lipid nanoparticle (LNP) encapsulated vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Syrian golden hamsters. Intranasal mRNA-LNP vaccination systemically induced spike-specific binding [immunoglobulin G (IgG) and IgA] and neutralizing antibodies. Intranasally vaccinated hamsters also had decreased viral loads in the respiratory tract, reduced lung pathology, and prevented weight loss after SARS-CoV-2 challenge. Together, this study demonstrates successful immunogenicity and protection against respiratory viral infection by an intranasally administered mRNA-LNP vaccine.


Subject(s)
COVID-19 , Animals , Cricetinae , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Neutralizing , RNA, Messenger/genetics
2.
Sci Transl Med ; 13(606)2021 08 11.
Article in English | MEDLINE | ID: mdl-34380769

ABSTRACT

Many women risk unintended pregnancy because of medical contraindications or dissatisfaction with contraceptive methods, including real and perceived side effects associated with the use of exogenous hormones. We pursued direct vaginal delivery of sperm-binding monoclonal antibodies (mAbs) that can limit progressive sperm motility in the female reproductive tract as a strategy for effective nonhormonal contraception. Here, motivated by the greater agglutination potencies of polyvalent immunoglobulins but the bioprocessing ease and stability of immunoglobulin G (IgG), we engineered a panel of sperm-binding IgGs with 6 to 10 antigen-binding fragments (Fabs), isolated from a healthy immune-infertile woman against a unique surface antigen universally present on human sperm. These highly multivalent IgGs (HM-IgGs) were at least 10- to 16-fold more potent and faster at agglutinating sperm than the parent IgG while preserving the crystallizable fragment (Fc) of IgG that mediates trapping of individual spermatozoa in mucus. The increased potencies translated into effective (>99.9%) reduction of progressively motile sperm in the sheep vagina using as little as 33 µg of the 10-Fab HM-IgG. HM-IgGs were produced at comparable yields and had identical thermal stability to the parent IgG, with greater homogeneity. HM-IgGs represent not only promising biologics for nonhormonal contraception but also a promising platform for engineering potent multivalent mAbs for other biomedical applications.


Subject(s)
Immunoglobulin G , Sperm Motility , Animals , Contraception , Female , Humans , Immunoglobulin Fab Fragments , Male , Pregnancy , Sheep , Spermatozoa
3.
EBioMedicine ; 69: 103478, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34256345

ABSTRACT

BACKGROUND: Approximately 40% of human pregnancies are unintended, indicating a need for more acceptable effective contraception methods. New antibody production systems make it possible to manufacture reagent-grade human monoclonal antibodies (mAbs) for clinical use. We used the Nicotiana platform to produce a human antisperm mAb and tested its efficacy for on-demand topical contraception. METHODS: Heavy and light chain variable region DNA sequences of a human IgM antisperm antibody derived from an infertile woman were inserted with human IgG1 constant region sequences into an agrobacterium and transfected into Nicotiana benthamiana. The product, an IgG1 mAb ["Human Contraception Antibody" (HCA)], was purified on Protein A columns, and QC was performed using the LabChip GXII Touch protein characterization system and SEC-HPLC. HCA was tested for antigen specificity by immunofluorescence and western blot assays, antisperm activity by sperm agglutination and complement dependent sperm immobilization assays, and safety in a human vaginal tissue (EpiVaginal™) model. FINDINGS: HCA was obtained at concentrations ranging from 0.4 to 4 mg/ml and consisted of > 90% IgG monomers. The mAb specifically reacted with a glycan epitope on CD52g, a glycoprotein produced in the male reproductive tract and found in abundance on sperm. HCA potently agglutinated sperm under a variety of relevant physiological conditions at concentrations ≥ 6.25 µg/ml, and mediated complement-dependent sperm immobilization at concentrations ≥ 1 µg/ml. HCA and its immune complexes did not induce inflammation in EpiVaginal™ tissue. INTERPRETATION: HCA, an IgG1 mAb with potent sperm agglutination and immobilization activity and a good safety profile, is a promising candidate for female contraception. FUNDING: This research was supported by grants R01 HD095630 and P50HD096957 from the National Institutes of Health.


Subject(s)
Antibodies, Monoclonal/immunology , CD52 Antigen/immunology , Contraception, Immunologic/methods , Spermatozoa/immunology , Vaccines, Contraceptive/immunology , Antibody Specificity , Female , Humans , Male
4.
J Neurochem ; 156(3): 379-390, 2021 02.
Article in English | MEDLINE | ID: mdl-32628315

ABSTRACT

TDP-43 has been identified as the major component of protein aggregates found in affected neurons in FTLD-TDP and amyotrophic lateral sclerosis (ALS) patients. TDP-43 is hyperphosphorylated, ubiquitinated, and cleaved in the C-terminus. CDC-7 was reported to phosphorylate TDP-43. There are no effective treatments for either FTLD-TDP or ALS, being a pressing need for the search of new therapies. We hypothesized that modulating CDC-7 activity with small molecules that are able to interfere with TDP-43 phosphorylation could be a good therapeutic strategy for these diseases. Here, we have studied the effects of novel brain penetrant, thiopurine-based, CDC-7 inhibitors in TDP-43 homeostasis in immortalized lymphocytes from FTLD-TDP patients, carriers of a loss-of-function GRN mutation, as well as in cells derived from sporadic ALS patients. We found that selective CDC-7 inhibitors, ERP1.14a and ERP1.28a, are able to decrease the enhanced TDP-43 phosphorylation in cells derived from FTLD-TDP and ALS patients and to prevent cytosolic accumulation of TDP-43. Moreover, treatment of FTLD-TDP lymphoblasts with CDC-7 inhibitors leads to recovering the nuclear function of TDP-43-inducing CDK6 repression. We suggest that CDC-7 inhibitors, mainly the heterocyclic compounds here shown, may be considered as promising drug candidates for the ALS/FTD spectrum.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Aged , Cells, Cultured , DNA-Binding Proteins/drug effects , Female , Humans , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Middle Aged
5.
Oxid Med Cell Longev ; 2020: 2984613, 2020.
Article in English | MEDLINE | ID: mdl-32908631

ABSTRACT

Clinopodium tomentosum (Kunth) Govaerts is an endemic species in Ecuador, where it is used as an anti-inflammatory plant to treat respiratory and digestive affections. In this work, effects of a Clinopodium tomentosum ethanolic extract (CTEE), prepared from aerial parts of the plant, were investigated on vascular endothelium functions. In particularly, angiogenesis activity was evaluated, using primary cultures of porcine aortic endothelial cells (pAECs). Cells were cultured for 24 h in the presence of CTEE different concentrations (10, 25, 50, and 100 µg/ml); no viability alterations were found in the 10-50 µg/ml range, while a slight, but significant, proliferative effect was observed at the highest dose. In addition, treatment with CTEE was able to rescue LPS-induced injury in terms of cell viability. The CTEE ability to affect angiogenesis was evaluated by scratch test analysis and by an in vitro capillary-like network assay. Treatment with 25-50 µg/ml of extract caused a significant increase in pAEC's migration and tube formation capabilities compared to untreated cells, as results from the increased master junctions' number. On the other hand, CTEE at 100 µg/ml did not induce the same effects. Quantitative PCR data demonstrated that FLK-1 mRNA expression significantly increased at a CTEE dose of 25 µg/ml. The CTEE phytochemical composition was assessed through HPLC-DAD; rosmarinic acid among phenolic acids and hesperidin among flavonoids were found as major phenolic components. Total phenolic content and total flavonoid content assays showed that flavonoids are the most abundant class of polyphenols. The CTEE antioxidant activity was also showed by means of the DPPH and ORAC assays. Results indicate that CTEE possesses an angiogenic capacity in a dose-dependent manner; this represents an initial step in elucidating the mechanism of the therapeutic use of the plant.


Subject(s)
Aorta/cytology , Endothelial Cells/cytology , Lamiaceae/chemistry , Neovascularization, Physiologic/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Animals , Antioxidants/pharmacology , Cell Cycle/drug effects , Cell Death/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Phytochemicals/analysis , Swine , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
6.
Front Pharmacol ; 11: 188, 2020.
Article in English | MEDLINE | ID: mdl-32210803

ABSTRACT

Kappa opioid receptor (KOPr) agonists represent alternative analgesics for their low abuse potential, although relevant adverse effects have limited their clinical use. Functionally selective KOPr agonists may activate, in a pathway-specific manner, G protein-mediated signaling, that produces antinociception, over ß-arrestin 2-dependent induction of p38MAPK, which preferentially contributes to adverse effects. Thus, functionally selective KOPr agonists biased toward G protein-coupled intracellular signaling over ß-arrestin-2-mediated pathways may be considered candidate therapeutics possibly devoid of many of the typical adverse effects elicited by classic KOPr agonists. Nonetheless, the potential utility of functionally selective agonists at opioid receptors is still highly debated; therefore, further studies are necessary to fully understand whether it will be possible to develop more effective and safer analgesics by exploiting functional selectivity at KOPr. In the present study we investigated in vitro functional selectivity and in vivo antinociceptive effects of LOR17, a novel KOPr selective peptidic agonist that we synthesized. LOR17-mediated effects on adenylyl cyclase inhibition, ERK1/2, p38MAPK phosphorylation, and astrocyte cell proliferation were studied in HEK-293 cells expressing hKOPr, U87-MG glioblastoma cells, and primary human astrocytes; biased agonism was investigated via cAMP ELISA and ß-arrestin 2 recruitment assays. Antinociception and antihypersensitivity were assessed in mice via warm-water tail-withdrawal test, intraperitoneal acid-induced writhing, and a model of oxaliplatin-induced neuropathic cold hypersensitivity. Effects of LOR17 on locomotor activity, exploratory activity, and forced-swim behavior were also assayed. We found that LOR17 is a selective, G protein biased KOPr agonist that inhibits adenylyl cyclase and activates early-phase ERK1/2 phosphorylation. Conversely to classic KOPr agonists as U50,488, LOR17 neither induces p38MAPK phosphorylation nor increases KOPr-dependent, p38MAPK-mediated cell proliferation in astrocytes. Moreover, LOR17 counteracts, in a concentration-dependent manner, U50,488-induced p38MAPK phosphorylation and astrocyte cell proliferation. Both U50,488 and LOR17 display potent antinociception in models of acute nociception, whereas LOR17 counteracts oxaliplatin-induced thermal hypersensitivity better than U50,488, and it is effective after single or repeated s.c. administration. LOR17 administered at a dose that fully alleviated oxaliplatin-induced thermal hypersensitivity did not alter motor coordination, locomotor and exploratory activities nor induced pro-depressant-like behavior. LOR17, therefore, may emerge as a novel KOPr agonist displaying functional selectivity toward G protein signaling and eliciting antinociceptive/antihypersensitivity effects in different animal models, including oxaliplatin-induced neuropathy.

7.
Eur J Med Chem ; 166: 90-107, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30685536

ABSTRACT

Multitarget cannabinoids could be a promising therapeutic strategic to fight against Alzheimer's disease. In this sense, our group has developed a new family of indazolylketones with multitarget profile including cannabinoids, cholinesterase and BACE-1 activity. A medicinal chemistry program that includes computational design, synthesis and in vitro and cellular evaluation has allowed to us to achieve lead compounds. In this work, the synthesis and evaluation of a new class of indazolylketones have been performed. Pharmacological evaluation includes functional activity for cannabinoid receptors on isolated tissue. In addition, in vitro inhibitory assays in AChE/BuChE enzymes and BACE-1 have been carried out. Furthermore, studies of neuroprotective effects in human neuroblastoma SH-SY5Y cells and studies of the mechanisms of survival/death in lymphoblasts of patients with Alzheimer's disease have been achieved. The results of pharmacological tests have revealed that some of these derivatives (5, 6) behave as CB2 cannabinoid agonists and simultaneously show BuChE and/or BACE-1 inhibition.


Subject(s)
Cannabinoids/chemistry , Cannabinoids/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Indazoles/chemistry , Ketones/chemistry , Ketones/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Butyrylcholinesterase/metabolism , Cannabinoids/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Cholinesterase Inhibitors/chemical synthesis , Drug Design , Humans , Ketones/chemical synthesis , Neurons/cytology , Neurons/drug effects , Receptor, Cannabinoid, CB2/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...