Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6695): 563-572, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696572

ABSTRACT

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Subject(s)
Aging, Premature , Aging , Brain , Circadian Rhythm , Muscle, Skeletal , Animals , Male , Mice , Aging/genetics , Aging/physiology , Aging, Premature/genetics , Aging, Premature/prevention & control , Brain/physiology , Circadian Clocks/physiology , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Homeostasis , Muscle, Skeletal/physiology , Mice, Knockout , ARNTL Transcription Factors/genetics
2.
Cell Stem Cell ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38701785

ABSTRACT

In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.

3.
Cell Rep ; 42(6): 112588, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37267101

ABSTRACT

Physiology is regulated by interconnected cell and tissue circadian clocks. Disruption of the rhythms generated by the concerted activity of these clocks is associated with metabolic disease. Here we tested the interactions between clocks in two critical components of organismal metabolism, liver and skeletal muscle, by rescuing clock function either in each organ separately or in both organs simultaneously in otherwise clock-less mice. Experiments showed that individual clocks are partially sufficient for tissue glucose metabolism, yet the connections between both tissue clocks coupled to daily feeding rhythms support systemic glucose tolerance. This synergy relies in part on local transcriptional control of the glucose machinery, feeding-responsive signals such as insulin, and metabolic cycles that connect the muscle and liver. We posit that spatiotemporal mechanisms of muscle and liver play an essential role in the maintenance of systemic glucose homeostasis and that disrupting this diurnal coordination can contribute to metabolic disease.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Liver/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism
4.
Exp Cell Res ; 413(1): 112989, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35081395

ABSTRACT

Circadian rhythms generate 24 h-long oscillations, which are key regulators of many aspects of behavior and physiology. Recent circadian transcriptome studies have discovered rhythmicity at the transcriptional level of hundreds of skeletal muscle genes, with roles in skeletal muscle growth, maintenance, and metabolic functions. These rhythms allow this tissue to perform molecular functions at the appropriate time of the day in order to anticipate environmental changes. However, while the last decade of research has characterized several aspects of the skeletal muscle molecular clock, many still are unexplored, including its functions, regulatory mechanisms, and interactions with other tissues. The central clock is believed to be located in the suprachiasmatic nucleus (SCN) of the brain hypothalamus, providing entrainment to peripheral organs through humoral and neuronal signals. However, these mechanisms of action are still unknown. Conversely, muscle tissue can be entrained through extrinsic, SCN-independent factors, such as feeding and physical activity. In this review, we provide an overview of the recent research about the extrinsic and intrinsic factors required for skeletal muscle clock regulation. Furthermore, we discuss the need for future studies to elucidate the mechanisms behind this regulation, which will in turn help dissect the role of circadian disruption at the onset of aging and diseases.

5.
Sci Adv ; 7(39): eabi7828, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34550736

ABSTRACT

The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...