Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998971

ABSTRACT

This study was carried out to investigate the continuous aqueous pretreatment of sugarcane bagasse (SCB) through twin-screw extrusion for a new integrated full valorization, where the solid residue (extrudate) was used for the production of bio-based materials by thermocompression and the filtrate for the production of high-value-added molecules. Two configurations, with and without a filtration module, were tested and the influence of the SCB composition and structure on the properties of the materials were determined. The impact of the liquid-to-solid (L/S) ratio was studied (0.65-6.00) in relation to the material properties and the biomolecule extraction yield in the filtrate (with the filtration configuration). An L/S ratio of at least 1.25 was required to obtain a liquid filtrate, and increasing the L/S ratio to 2 increased the extraction yield to 11.5 g/kg of the inlet SCB. The extrudate obtained without filtration yielded materials with properties equivalent to those obtained with filtration for L/S ratios of at least 1.25. Since the molecule extraction process was limited, a configuration without filtration would make it possible to reduce water consumption in the process while obtaining high material properties. Under the filtration configuration, an L/S ratio of 2 was the best tradeoff between water consumption, extraction yield, and the material properties, which included 1485 kg/m3 density, 6.2 GPa flexural modulus, 51.2 MPa flexural strength, and a water absorption (WA) and thickness swelling (TS) of 37% and 44%, respectively, after 24 h of water immersion. The aqueous pretreatment by twin-screw extrusion allowed for the overall valorization of SCB, resulting in materials with significantly improved properties compared to those obtained with raw SCB due to fiber deconstruction.

2.
Materials (Basel) ; 17(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673071

ABSTRACT

The aim of this study was to assess the influence of thermocompression conditions on lignocellulosic biomasses such as sugarcane bagasse (SCB) in the production of 100% binderless bio-based materials. Five parameters were investigated: pressure applied (7-102 MPa), molding temperature (60-240 °C), molding time (5-30 min), fiber/fine-particle ratio (0/100-100/0) and moisture content (0-20%). These parameters affected the properties and chemical composition of the materials. The density ranged from 1198 to 1507 kg/m3, the flexural modulus from 0.9 to 6.9 GPa and the flexural strength at breaking point from 6.1 to 43.6 MPa. Water absorption (WA) and thickness swelling (TS) values ranged from 21% to 240% and from 9% to 208%, respectively. Higher mechanical properties were obtained using SCB with fine particles, low moisture content (4-10%) and high temperature (≥200 °C) and pressure (≥68 MPa), while water resistance was improved using more severe thermocompression conditions with the highest temperature (240 °C) and time (30 min) or a higher moisture content (≥12.5%). Correlations were noted between the mechanical properties and density, and the material obtained with only fine particles had the highest mechanical properties and density. Material obtained with a 30 min molding time had the lowest WA and TS due to internal chemical reorganization followed by hemicellulose hydrolysis into water-soluble extractables.

3.
Materials (Basel) ; 17(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38591409

ABSTRACT

Since 2010, huge quantities of Sargassum spp. algae have been proliferating in the Atlantic Ocean and stranding on Caribbean beaches, causing major economic, environmental, and health problems. In this study, an innovative high-density binderless particleboard was developed using uniaxial thermo-compression coupled with a cooling system. The raw material consisted of ground Sargassum seaweeds pre-treated by twin-screw extrusion with water to remove sea salt. The raw material and the particleboards were produced by using various analytical techniques such as Dynamic Vapor Sorption (DVS), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), or Thermogravimetric Analysis (TGA). The experimental conditions for thermo-compression (temperature, pressure, time) were evaluated. The best thermo-compression conditions tested were 200 °C, 40 MPa pressure for 7.5 min. This resulted in a particleboard with high density (up to 1.63 ± 0.02 g/cm3) and high flexural strength/modulus (up to 32.3 ± 1.8 MPa/6.8 ± 0.2 GPa, respectively), but a low water contact angle of 38.9° ± 3.5°. Thermal analyses revealed the effect of alginates on the mechanical properties of particleboards. This work opens the door to a new way of adding value to Sargassum seaweed, using the whole algae with minimal pre-treatment.

4.
Biomolecules ; 12(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-35204650

ABSTRACT

An aqueous integrated process was developed to obtain several valuable products from sunflower seeds. With a high-shear rate crusher, high-pressure homogenization and centrifugation, it is possible to process 600× g of seeds in 1400× g of water to obtain a concentrated cream phase with a dry matter (dm) content of 46%, consisting of 74 (w/w dm) lipids in the form of an oil-body dispersion (droplet size d(0.5): 2.0 µm) rich in proteins (13% w/w dm, with membranous and extraneous proteins). The inclusion of an enzymatic step mediated by a lipase made possible the total hydrolysis of trigylcerides into fatty acids. The resulting cream had a slightly higher lipid concentration, a ratio lipid/water closer to 1, with a dry matter content of 57% consisting of 69% (w/w) lipids, a more complex structure, as observed on Cryo-SEM, with a droplet size slightly greater (d(0.5): 2.5 µm) than that of native oil bodies and a conserved protein concentration (12% w/w dm) but an almost vanished phospholipid content (17.1 ± 4.4 mg/g lipids compared to 144.6 ± 6 mg/g lipids in the oil-body dispersion and 1811.2 ± 122.2 mg/g lipids in the seed). The aqueous phases and pellets were also characterized, and their mineral, lipid and protein contents provide new possibilities for valorization in food or technical applications.


Subject(s)
Fatty Acids , Helianthus , Emulsions/chemistry , Fatty Acids/analysis , Lipid Droplets , Seeds/chemistry , Water/chemistry
5.
Sensors (Basel) ; 20(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096666

ABSTRACT

This article describes an optical method based on the association of surface plasmon resonance (SPR) with chitosan (CS) film and its nanocomposites, including zinc oxide (ZnO) or graphene oxide (GO) for glyphosate detection. CS and CS/ZnO or CS/GO thin films were deposited on an Au chip using the spin coating technique. The characterization, morphology, and composition of these films were performed by Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and contact angle technique. Sensor preparation conditions including the cross-linking and mobile phase (pH and salinity) were investigated and thoroughly optimized. Results showed that the CS/ZnO thin-film composite provides the highest sensitivity for glyphosate sensing with a low detection limit of 8 nM and with high reproducibility. From the Langmuir-type adsorption model and the effect of ionic strength, the adsorption mechanisms of glyphosate could be controlled by electrostatic and steric interaction with possible formation of 1:1 outer-sphere surface complexes. The selectivity of the optical method was investigated with respect to the sorption of glyphosate metabolite (aminomethylphosphonic acid) (AMPA), glufosinate, and one of the glufonisate metabolites (3-methyl-phosphinico-propionic acid) (MPPA). Results showed that the SPR sensor offers a very good selectivity for glyphosate, but the competition of other molecules could still occur in aqueous systems.

6.
Bioresour Technol ; 299: 122591, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31918150

ABSTRACT

This study aims to investigate the effects of microwaves, ultrasonic and alkaline pretreatments on olive pomace properties and its biomethane potential. Alkaline pretreatment was found to reduce lipid and fiber contents (especially lignin) and to increase soluble matter. The alkali pretreatment at a dose of 8% (w/w TS) under 25 °C and for 1 day removed 96% of initial lipids from the solid olive pomace. Unlike NaOH addition, mild microwaves and ultrasonic pretreatments had no impact on lignin. However, in the case of long microwaves pretreatment (450 W-10 min), cellulose and lignin contents were reduced by 50% and 26% respectively. Similarly, the combination of ultrasonic and alkali reagent showed a positive effect on fiber degradation and lipid solubilization as well as a positive impact on methane production. Statistical analysis highlighted the correlation between NaOH dose, solubilization and methane production. The alkaline pretreatment at ambient temperature appeared the most energetically efficient.


Subject(s)
Microwaves , Olea , Anaerobiosis , Lignin , Methane , Ultrasonics
7.
Food Chem ; 208: 245-51, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27132846

ABSTRACT

Microscopic observation of sunflower meal before and after extraction indicated that extensive cellular disruption was achieved by extrusion, but that unextracted oil remained sequestered as coalesced oil within the void spaces of disrupted cotyledon cells. A full factorial design experiment was defined to develop aqueous extraction processing (AEP) with and without enzymes to improve vegetable oil extraction yields of extruded sunflower meal. This experimental design studied the influence of four parameters, agitation, liquid/solid (L/S) ratio, and cellulase and protease addition, on extraction yield of lipid and protein. Agitation and addition of cellulases increased oil extraction yield, indicating that emulsification of oil and alteration of the geometry of the confining cellular matrix were important mechanisms for improving yields. Protease and liquid-solid ratio of the extraction mixture did not have significant effects, indicating key differences with previously established soy oil extraction mechanisms. Maximum yields attained for oil and protein extraction were 39% and 90%, respectively, with the aid of a surfactant.


Subject(s)
Helianthus/chemistry , Plant Extracts/analysis , Plant Oils/analysis , Calorimetry, Differential Scanning , Food Analysis , Food Handling , Particle Size
8.
Colloids Surf B Biointerfaces ; 80(2): 125-32, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20580539

ABSTRACT

Oleosins are plant proteins associated with phospholipids in seed oil bodies. The ability of oleosins to aid in the emulsification and stabilization of oil bodies is well known, but little information is available on their interaction with phospholipids at the interface between oil bodies and aqueous medium. Oil body reconstitution at various phospholipid/oleosin ratios was carried out to observe how rapeseed oleosins of 20kDa and rapeseed phospholipids affect oil body stability. Phospholipids are needed to stabilize oil droplets, but oleosins are mandatory to avoid coalescence. We thus characterized how phospholipids affect the interfacial properties of oleosins at pHs 5.5 and 8.5, by analyzing the adsorption kinetics and interfacial dilational rheology. We observed a synergic effect between oleosins and phospholipids in increasing surface pressure at both pHs. This kind of effect was also observed for the dilational modulus at pH 5.5. A thermodynamic approach highlights these synergic interactions between oleosins and phospholipids through a positive deviation from ideality.


Subject(s)
Brassica rapa/chemistry , Phospholipids/chemistry , Plant Oils/chemistry , Plant Proteins/chemistry , Adsorption , Hydrogen-Ion Concentration
9.
Colloids Surf B Biointerfaces ; 49(2): 126-35, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16621474

ABSTRACT

The present study focused on the shear-induced detachment of Saccharomyces cerevisiae in adhesive contact with a 316L stainless steel surface using a shear stress flow chamber, with a view to determining the respective influence of the yeast surface properties and the support characteristics. The effect of cultivation of S. cerevisiae yeast cells on their subsequent detachment from the solid surface was particularly investigated. In order to elucidate the role of stainless steel, non-metallic supports were used as control, covering a broad range of surface properties such as surface free energy and roughness: polypropylene (hydrophobic), polystyrene (mildly hydrophobic, similar to stainless steel) and glass (hydrophilic). All materials were very smooth with respect to the size of yeast. First, experiments were carried out on two types of yeast cells, just rehydrated in saline solution, a biological model widely used in the literature. The influence of the ionic strength (1.5 and 150 mM NaCl) on glass and stainless steel was evaluated. Unlike on glass, no clear evidence was found for electrostatic repulsion with stainless steel since high adhesion was observed whatever the ionic strength. A lack of correlation in adhesion results was also obtained when considering the surface physico-chemical characteristics of type I (hydrophilic) and type II (hydrophobic) rehydrated cells and those of both polymers. It was postulated that unavoidable "sticky" compounds were present on the cell wall, which could not be completely removed during the successive washings of the rehydrated cell suspension before use. This could dramatically alter the yeast surface properties and modify the adhesion strength, thus clearly demonstrating the necessity to work with yeast coming from fresh cultures. Biologically active yeast cells were then used. Once cultured, type I- and type II-yeast cells were shown to exhibit the same hydrophilic properties. Regardless of the material used, for the same ionic strength (150 mM NaCl), yeast adhesion was drastically reduced compared to rehydrated yeast cells. Among all the materials tested, the specificity of 316L stainless steel was clearly established. Indeed, for glass and polymers, cell adhesion was substratum-dependent and driven by the balance between the Lifshitz-van der Waals and Lewis acid/base interactions. Despite nearly identical surface free energies for polystyrene and stainless steel, the metallic surface promoted a totally distinct behaviour which was characterized by a strong - although highly variable - yeast adhesion.


Subject(s)
Saccharomyces cerevisiae/chemistry , Stainless Steel/chemistry , Cell Adhesion , Glass/chemistry , Polypropylenes/chemistry , Polystyrenes/chemistry , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...