Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dig Liver Dis ; 52(3): 314-323, 2020 03.
Article in English | MEDLINE | ID: mdl-31607566

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disorder. NAFLD, associated lipotoxicity, fibrosis, oxidative stress, and altered mitochondrial metabolism, is responsible for systemic inflammation, which contributes to organ dysfunction in extrahepatic tissues, including the heart. We investigated the ability of L-carnitine (LC) to oppose the pathogenic mechanisms underlying NAFLD progression and associated heart dysfunction, in a mouse model of methionine-choline-deficient diet (MCDD). Mice were divided into three groups: namely, the control group (CONTR) fed with a regular diet and two groups fed with MCDD for 6 weeks. In the last 3 weeks, one of the MCDD groups received LC (200 mg/kg each day) through drinking water (MCDD + LC). The hepatic lipid accumulation and oxidative stress decreased after LC supplementation, which also reduced hepatic fibrosis via modulation of α-smooth muscle actin (αSMA), peroxisome-activated receptor gamma (PPARγ), and nuclear factor kappa B (NfƙB) expression. LC ameliorated systemic inflammation, mitigated cardiac reactive oxygen species (ROS) production, and prevented fibrosis progression by acting on signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated kinase 1-2 (ERK1-2), and αSMA. This study confirms the existence of a relationship between fatty liver disease and cardiac abnormalities and highlights the role of LC in controlling liver oxidative stress, steatosis, fibrosis, and NAFLD-associated cardiac dysfunction.


Subject(s)
Carnitine/pharmacology , Dietary Supplements , Heart Diseases/prevention & control , Liver Cirrhosis/prevention & control , Non-alcoholic Fatty Liver Disease/drug therapy , Oxidative Stress/drug effects , Animals , Choline Deficiency , Diet , Disease Models, Animal , Disease Progression , Heart Diseases/etiology , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Male , Methionine/deficiency , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Reactive Oxygen Species/metabolism
2.
Int J Endocrinol ; 2019: 7570146, 2019.
Article in English | MEDLINE | ID: mdl-30774659

ABSTRACT

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is the common tumor of the liver. Unfortunately, most HCC seem to be resistant to conventional chemotherapy and radiotherapy. The poor efficacy of antitumor agents is also due, at least in part, to the inefficient drug delivery and metabolism exerted by the steatotic/cirrhotic liver that hosts the tumor. Thus, novel approaches in chemotherapy may be needed to improve the survival rate in patients with HCC. Metformin (METF) has been found to lower HCC risk; however, the mechanisms by which METF performs its anticancer activity are not completely elucidated. Previous studies have showed METF action on growth inhibition in the liver in a dose/time-dependent manner and its antitumor role by targeting multiple pathways. We investigated molecular effects of METF in an in vitro human hepatoma model (HepG2), studying cell cycle regulators, tumorigenesis markers, and insulin-like growth factor (IGF) axis regulation. MATERIALS AND METHODS: HepG2 cells were treated with METF (400 µM) for 24, 48, and 72 hours. METF action on cell cycle progression and cellular pathways involved in metabolism regulation was evaluated by gene expression analysis, immunofluorescence, and Western blot assay. RESULTS: By assessing HepG2 cell viability, METF significantly decreased growth cell capacity raising KLF6/p21 protein content. Moreover, METF ameliorated the cancer microenvironment reducing cellular lipid drop accumulation and promoting AMPK activity. The overexpression of IGF-II molecule and the IGF-I receptor that plays a main role in HCC progression was counteracted by METF. Furthermore, the protein content of HCC principal tumor markers, CK19 and OPN, linked to the metastasis process was significantly reduced by METF stimulus. CONCLUSION: Our data show that METF could suppress HepG2 proliferation, through induction of cell cycle arrest at the G0/G1 phase. In addition, METF effect on the cancer microenvironment and on the IGF axis leads to the development of new METF therapeutic use in HCC treatment.

3.
Biomed Res Int ; 2019: 5678548, 2019.
Article in English | MEDLINE | ID: mdl-30800672

ABSTRACT

Bone fragility and associated fracture risk are major problems in aging. Oxidative stress and mitochondrial dysfunction play a key role in the development of bone fragility. Mitochondrial dysfunction is closely associated with excessive production of reactive oxygen species (ROS). L-Carnitine (L-C), a fundamental cofactor in lipid metabolism, has an important antioxidant property. Several studies have shown how L-C enhances osteoblastic proliferation and activity. In the current study, we investigated the potential effects of L-C on mitochondrial activity, ROS production, and gene expression involved in osteoblastic differentiation using osteoblast-like cells (hOBs) derived from elderly patients. The effect of 5mM L-C treatment on mitochondrial activity and L-C antioxidant activity was studied by ROS production evaluation and cell-based antioxidant activity assay. The possible effects of L-C on hOBs differentiation were assessed by analyzing gene and protein expression by Real Time PCR and western blotting, respectively. L-C enhanced mitochondrial activity and improved antioxidant defense of hOBs. Furthermore, L-C increased the phosphorylation of Ca2+/calmodulin-dependent protein kinase II. Additionally, L-C induced the phosphorylation of ERK1/2 and AKT and the main kinases involved in osteoblastic differentiation and upregulated the expression of osteogenic related genes, RUNX2, osterix (OSX), bone sialoprotein (BSP), and osteopontin (OPN) as well as OPN protein synthesis, suggesting that L-C exerts a positive modulation of key osteogenic factors. In conclusion, L-C supplementation could represent a possible adjuvant in the treatment of bone fragility, counteracting oxidative phenomena and promoting bone quality maintenance.


Subject(s)
Bone Matrix/drug effects , Carnitine/pharmacology , Cell Differentiation/drug effects , Osteoblasts/drug effects , Oxidative Stress/drug effects , Aged , Aged, 80 and over , Antioxidants/metabolism , Bone Matrix/metabolism , Calcification, Physiologic/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Humans , Integrin-Binding Sialoprotein/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Osteoblasts/metabolism , Osteogenesis/drug effects , Osteopontin/metabolism , Oxidation-Reduction , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Sp7 Transcription Factor/metabolism , Up-Regulation/drug effects
4.
J Oleo Sci ; 67(10): 1315-1326, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30210078

ABSTRACT

Nuts-enriched diets were shown to bear beneficial effects for human's health. Among nuts, hazelnut plays a major role in human nutrition and health because of its unique fatty acid composition (predominantly MUFA), fat soluble bioactives (tocopherols and phytosterols), vitamins (vitamin E), essential minerals (selenium), essential amino acids, antioxidant phenolics (caffeic acid), dietary fiber (soluble form), and bioactive phtytochemicals. The current study was designed to explore the cellular effects of two particular hazelnut strains (Ordu and Tonda).Four hazelnut oils were obtained from 2 common strains (Ordu hazelnut oil, Ordu cuticle oil, Tonda "gentile" hazelnut oil, Tonda "gentile" cuticle oil). The metabolic and nutritional effects of the four hazelnut oils were assessed using an in vitro model of mouse myoblasts, identifying the intracellular mechanisms involved in muscle differentiation and in the modulation of specific muscle genes.We demonstrated that hazelnut oils induced morphological changes in neo-formed myotubes increasing myotubes size. In particular, the diversified effects of the hazelnuts and cuticle oils on muscle fibres shape (on length and diameter respectively) determine a diversified pattern of action on elongation or hypertrophy of the muscle fibres. Furthermore, hazelnut oils regulate different pathways associated with myoblasts growth and development, stimulate signal transduction, and activate cell commitment and differentiation. The present results provide evidence that hazelnut oils may affect skeletal muscle growth and differentiation, constituting the proof of principle for the future development of novel foods and integrators.


Subject(s)
Cell Differentiation/drug effects , Corylus/chemistry , Myoblasts, Skeletal/physiology , Plant Oils/isolation & purification , Plant Oils/pharmacology , Signal Transduction/drug effects , Amino Acids, Essential/analysis , Animals , Antioxidants/analysis , Caffeic Acids/analysis , Cells, Cultured , Dietary Fiber/analysis , Fatty Acids, Monounsaturated/analysis , Mice , Phytochemicals/analysis , Plant Oils/chemistry , Selenium/analysis , Stimulation, Chemical , Tocopherols/analysis , Vitamin E/analysis
5.
J Diabetes Res ; 2018: 4028297, 2018.
Article in English | MEDLINE | ID: mdl-30622968

ABSTRACT

BACKGROUND: Metabolic alterations as hyperglycemia and inflammation induce myocardial molecular events enhancing oxidative stress and mitochondrial dysfunction. Those alterations are responsible for a progressive loss of cardiomyocytes, cardiac stem cells, and consequent cardiovascular complications. Currently, there are no effective pharmacological measures to protect the heart from these metabolic modifications, and the development of new therapeutic approaches, focused on improvement of the oxidative stress condition, is pivotal. The protective effects of levocarnitine (LC) in patients with ischemic heart disease are related to the attenuation of oxidative stress, but LC mechanisms have yet to be fully understood. OBJECTIVE: The aim of this work was to investigate LC's role in oxidative stress condition, on ROS production and mitochondrial detoxifying function in H9c2 rat cardiomyocytes during hyperglycemia. METHODS: H9c2 cells in the hyperglycemic state (25 mmol/L glucose) were exposed to 0.5 or 5 mM LC for 48 and 72 h: LC effects on signaling pathways involved in oxidative stress condition were studied by Western blot and immunofluorescence analysis. To evaluate ROS production, H9c2 cells were exposed to H2O2 after LC pretreatment. RESULTS: Our in vitro study indicates how LC supplementation might protect cardiomyocytes from oxidative stress-related damage, preventing ROS formation and activating antioxidant signaling pathways in hyperglycemic conditions. In particular, LC promotes STAT3 activation and significantly increases the expression of antioxidant protein SOD2. Hyperglycemic cardiac cells are characterized by impairment in mitochondrial dysfunction and the CaMKII signal: LC promotes CaMKII expression and activation and enhancement of AMPK protein synthesis. Our results suggest that LC might ameliorate metabolic aspects of hyperglycemic cardiac cells. Finally, LC doses herein used did not modify H9c2 growth rate and viability. CONCLUSIONS: Our novel study demonstrates that LC improves the microenvironment damaged by oxidative stress (induced by hyperglycemia), thus proposing this nutraceutical compound as an adjuvant in diabetic cardiac regenerative medicine.


Subject(s)
Antioxidants/pharmacology , Carnitine/pharmacology , Cell Survival/drug effects , Hyperglycemia/metabolism , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Line , Down-Regulation/drug effects , Hydrogen Peroxide/pharmacology , Myocytes, Cardiac/metabolism , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
6.
J Transl Med ; 15(1): 132, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592272

ABSTRACT

BACKGROUND: Betaine (BET), a component of many foods, is an essential osmolyte and a source of methyl groups; it also shows an antioxidant activity. Moreover, BET stimulates muscle differentiation via insulin like growth factor I (IGF-I). The processes of myogenesis and osteogenesis involve common mechanisms with skeletal muscle cells and osteoblasts sharing the same precursor. Therefore, we have hypothesized that BET might be effective on osteoblast cell differentiation. METHODS: The effect of BET was tested in human osteoblasts (hObs) derived from trabecular bone samples obtained from waste material of orthopedic surgery. Cells were treated with 10 mM BET at 5, 15, 60 min and 3, 6 and 24 h. The possible effects of BET on hObs differentiation were evaluated by real time PCR, western blot and immunofluorescence analysis. Calcium imaging was used to monitor intracellular calcium changes. RESULTS: Real time PCR results showed that BET stimulated significantly the expression of RUNX2, osterix, bone sialoprotein and osteopontin. Western blot and immunofluorescence confirmed BET stimulation of osteopontin protein synthesis. BET stimulated ERK signaling, key pathway involved in osteoblastogenesis and calcium signaling. BET induced a rise of intracellular calcium by means of the calcium ions influx from the extracellular milieu through the L-type calcium channels and CaMKII signaling activation. A significant rise in IGF-I mRNA at 3 and 6 h and a significant increase of IGF-I protein at 6 and 24 h after BET stimulus was detected. Furthermore, BET was able to increase significantly both SOD2 gene expression and protein content. CONCLUSIONS: Our study showed that three signaling pathways, i.e. cytosolic calcium influx, ERK activation and IGF-I production, are enhanced by BET in human osteoblasts. These pathways could have synergistic effects on osteogenic gene expression and protein synthesis, thus potentially leading to enhanced bone formation. Taken together, these results suggest that BET could be a promising nutraceutical therapeutic agent in the strategy to counteract the concomitant and interacting impact of sarcopenia and osteoporosis, i.e. the major determinants of senile frailty and related mortality.


Subject(s)
Betaine/pharmacology , Cell Differentiation/drug effects , Osteoblasts/cytology , Aged , Aged, 80 and over , Calcium/metabolism , Cells, Cultured , Gene Expression Regulation/drug effects , Humans , Membrane Potentials/drug effects , Models, Biological , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
8.
Endocrine ; 58(1): 33-45, 2017 10.
Article in English | MEDLINE | ID: mdl-27933435

ABSTRACT

PURPOSE: The purpose of this study is to investigate Ranolazine action on skeletal muscle differentiation and mitochondrial oxidative phenomena. Ranolazine, an antianginal drug, which acts blocking the late INaL current, was shown to lower hemoglobin A1c in patients with diabetes. In the present study, we hypothesized an action of Ranolazine on skeletal muscle cells regeneration and oxidative process, leading to a reduction of insulin resistance. METHODS: 10 µM Ranolazine was added to C2C12 murine myoblastic cells during proliferation, differentiation and newly formed myotubes. RESULTS: Ranolazine promoted the development of a specific myogenic phenotype: increasing the expression of myogenic regulator factors and inhibiting cell cycle progression factor (p21). Ranolazine stimulated calcium signaling (calmodulin-dependent kinases) and reduced reactive oxygen species levels. Furthermore, Ranolazine maintained mitochondrial homeostasis. During the differentiation phase, Ranolazine promoted myotubes formation. Ranolazine did not modify kinases involved in skeletal muscle differentiation and glucose uptake (extracellular signal-regulated kinases 1/2 and AKT pathways), but activated calcium signaling pathways. During proliferation, Ranolazine did not modify the number of mitochondria while decreasing osteopontin protein levels. Lastly, neo-formed myotubes treated with Ranolazine showed typical hypertrophic phenotype. CONCLUSION: In conclusion, our results indicate that Ranolazine stimulates myogenesis and reduces a pro-oxidant inflammation/oxidative condition, activating a calcium signaling pathway. These newly described mechanisms may partially explain the glucose lowering effect of the drug.


Subject(s)
Enzyme Inhibitors/pharmacology , Muscle Fibers, Skeletal/drug effects , Oxidative Stress/drug effects , Ranolazine/pharmacology , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Insulin Resistance , Mice , Muscle Development/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...