Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(15): 10445-10449, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29616694

ABSTRACT

The emission of silicon nanocrystals (Si-NCs), synthesized by pulsed laser ablation in water, was investigated on varying the pH of the solution. These samples emit µs decaying orange photoluminescence (PL) associated with radiative recombination of quantum-confined excitons. Time-resolved spectra reveal that both the PL intensity and the lifetime increase by a factor of ∼20 when the pH decreases from 10 to 1 thus indicating that the emission quantum efficiency increases by inhibiting nonradiative decay rates. Infrared (IR) absorption and electron paramagnetic resonance (EPR) experiments allow addressing the origin of defects on which the excitons nonradiatively recombine. The linear correlation between the PL and the growth of SiH groups demonstrates that H+ ions passivate the nonradiative defects that are located in the interlayer between the Si-NC core and the amorphous SiO2 shell.

2.
Phys Chem Chem Phys ; 18(24): 16237-44, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27251452

ABSTRACT

ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, µRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Raman mode at 565 cm(-1) associated with oxygen vacancies, accompanied by a decrease of defect-related emission at 2.2 eV. Based on our experimental results the emission at 2.2 eV is proposed to originate from a photo-generated hole in the valence band recombining with an electron deeply trapped in a singly ionized oxygen vacancy. This investigation clarifies important aspects of the photophysics of ZnO NPs and indicates that ZnO emission can be controlled by thermal annealing, which is important in view of optoelectronic applications.

3.
Phys Chem Chem Phys ; 16(40): 22028-34, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25205259

ABSTRACT

We report the study of the visible-ultraviolet emission properties and the structural features of silica nanoparticles prepared through a laboratory sol-gel technique. Atomic force microscopy, Raman and Infrared investigations highlighted the 10 nm size, purity and porosity of the obtained nanoparticles. By using time resolved photoluminescence techniques in air and in a vacuum we were able to single out two contributions in the visible emission: the first, stable in both atmospheres, is a typical fast blue band centered around 2.8 eV; the second, only observed in a vacuum around the 3.0-3.5 eV range, is a vibrational progression with two phonon modes at 1370 cm(-1) and 360 cm(-1). By fully characterizing the spectroscopic features of this structured emission, we determine its vibronic properties and clarify the different origins with respect to the blue luminescent defect.


Subject(s)
Nanoparticles/chemistry , Silicon Dioxide/chemistry , Microscopy, Atomic Force , Particle Size , Porosity , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...