Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(9): e1011483, 2023 09.
Article in English | MEDLINE | ID: mdl-37747914

ABSTRACT

Segmenting visual stimuli into distinct groups of features and visual objects is central to visual function. Classical psychophysical methods have helped uncover many rules of human perceptual segmentation, and recent progress in machine learning has produced successful algorithms. Yet, the computational logic of human segmentation remains unclear, partially because we lack well-controlled paradigms to measure perceptual segmentation maps and compare models quantitatively. Here we propose a new, integrated approach: given an image, we measure multiple pixel-based same-different judgments and perform model-based reconstruction of the underlying segmentation map. The reconstruction is robust to several experimental manipulations and captures the variability of individual participants. We demonstrate the validity of the approach on human segmentation of natural images and composite textures. We show that image uncertainty affects measured human variability, and it influences how participants weigh different visual features. Because any putative segmentation algorithm can be inserted to perform the reconstruction, our paradigm affords quantitative tests of theories of perception as well as new benchmarks for segmentation algorithms.


Subject(s)
Algorithms , Vision, Ocular , Humans , Uncertainty , Machine Learning , Image Processing, Computer-Assisted/methods
2.
ArXiv ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-36824425

ABSTRACT

Segmenting visual stimuli into distinct groups of features and visual objects is central to visual function. Classical psychophysical methods have helped uncover many rules of human perceptual segmentation, and recent progress in machine learning has produced successful algorithms. Yet, the computational logic of human segmentation remains unclear, partially because we lack well-controlled paradigms to measure perceptual segmentation maps and compare models quantitatively. Here we propose a new, integrated approach: given an image, we measure multiple pixel-based same-different judgments and perform model-based reconstruction of the underlying segmentation map. The reconstruction is robust to several experimental manipulations and captures the variability of individual participants. We demonstrate the validity of the approach on human segmentation of natural images and composite textures. We show that image uncertainty affects measured human variability, and it influences how participants weigh different visual features. Because any putative segmentation algorithm can be inserted to perform the reconstruction, our paradigm affords quantitative tests of theories of perception as well as new benchmarks for segmentation algorithms.

3.
Proc Int Conf Image Proc ; 2022: 4073-4077, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36404988

ABSTRACT

We propose a family of probabilistic segmentation algorithms for videos that rely on a generative model capturing static and dynamic natural image statistics. Our framework adopts flexibly regularized mixture models (FlexMM) [1], an efficient method to combine mixture distributions across different data sources. FlexMMs of Student-t distributions successfully segment static natural images, through uncertainty-based information sharing between hidden layers of CNNs. We further extend this approach to videos and exploit FlexMM to propagate segment labels across space and time. We show that temporal propagation improves temporal consistency of segmentation, reproducing qualitatively a key aspect of human perceptual grouping. Besides, Student-t distributions can capture statistics of optical flows of natural movies, which represent apparent motion in the video. Integrating these motion cues in our temporal FlexMM further enhances the segmentation of each frame of natural movies. Our probabilistic dynamic segmentation algorithms thus provide a new framework to study uncertainty in human dynamic perceptual segmentation.

4.
Neural Netw ; 149: 107-123, 2022 May.
Article in English | MEDLINE | ID: mdl-35228148

ABSTRACT

Probabilistic finite mixture models are widely used for unsupervised clustering. These models can often be improved by adapting them to the topology of the data. For instance, in order to classify spatially adjacent data points similarly, it is common to introduce a Laplacian constraint on the posterior probability that each data point belongs to a class. Alternatively, the mixing probabilities can be treated as free parameters, while assuming Gauss-Markov or more complex priors to regularize those mixing probabilities. However, these approaches are constrained by the shape of the prior and often lead to complicated or intractable inference. Here, we propose a new parametrization of the Dirichlet distribution to flexibly regularize the mixing probabilities of over-parametrized mixture distributions. Using the Expectation-Maximization algorithm, we show that our approach allows us to define any linear update rule for the mixing probabilities, including spatial smoothing regularization as a special case. We then show that this flexible design can be extended to share class information between multiple mixture models. We apply our algorithm to artificial and natural image segmentation tasks, and we provide quantitative and qualitative comparison of the performance of Gaussian and Student-t mixtures on the Berkeley Segmentation Dataset. We also demonstrate how to propagate class information across the layers of deep convolutional neural networks in a probabilistically optimal way, suggesting a new interpretation for feedback signals in biological visual systems. Our flexible approach can be easily generalized to adapt probabilistic mixture models to arbitrary data topologies.


Subject(s)
Algorithms , Models, Statistical , Cluster Analysis , Humans , Neural Networks, Computer , Normal Distribution
5.
Adv Neural Inf Process Syst ; 33: 22146-22157, 2020 Dec.
Article in English | MEDLINE | ID: mdl-36420050

ABSTRACT

Texture synthesis models are important tools for understanding visual processing. In particular, statistical approaches based on neurally relevant features have been instrumental in understanding aspects of visual perception and of neural coding. New deep learning-based approaches further improve the quality of synthetic textures. Yet, it is still unclear why deep texture synthesis performs so well, and applications of this new framework to probe visual perception are scarce. Here, we show that distributions of deep convolutional neural network (CNN) activations of a texture are well described by elliptical distributions and therefore, following optimal transport theory, constraining their mean and covariance is sufficient to generate new texture samples. Then, we propose the natural geodesics (i.e. the shortest path between two points) arising with the optimal transport metric to interpolate between arbitrary textures. Compared to other CNN-based approaches, our interpolation method appears to match more closely the geometry of texture perception, and our mathematical framework is better suited to study its statistical nature. We apply our method by measuring the perceptual scale associated to the interpolation parameter in human observers, and the neural sensitivity of different areas of visual cortex in macaque monkeys.

6.
Sci Rep ; 9(1): 16437, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31712688

ABSTRACT

Humans rely on auditory information to estimate the path of moving sound sources. But unlike in vision, the existence of motion-sensitive mechanisms in audition is still open to debate. Psychophysical studies indicate that auditory motion perception emerges from successive localization, but existing models fail to predict experimental results. However, these models do not account for any temporal integration. We propose a new model tracking motion using successive localization snapshots but integrated over time. This model is derived from psychophysical experiments on the upper limit for circular auditory motion perception (UL), defined as the speed above which humans no longer identify the direction of sounds spinning around them. Our model predicts ULs measured with different stimuli using solely static localization cues. The temporal integration blurs these localization cues rendering them unreliable at high speeds, which results in the UL. Our findings indicate that auditory motion perception does not require motion-sensitive mechanisms.


Subject(s)
Auditory Perception , Motion Perception , Sound Localization , Acoustic Stimulation , Algorithms , Discrimination, Psychological , Female , Humans , Male , Models, Theoretical , Motion
7.
Neural Comput ; 30(12): 3355-3392, 2018 12.
Article in English | MEDLINE | ID: mdl-30314424

ABSTRACT

A common practice to account for psychophysical biases in vision is to frame them as consequences of a dynamic process relying on optimal inference with respect to a generative model. The study presented here details the complete formulation of such a generative model intended to probe visual motion perception with a dynamic texture model. It is derived in a set of axiomatic steps constrained by biological plausibility. We extend previous contributions by detailing three equivalent formulations of this texture model. First, the composite dynamic textures are constructed by the random aggregation of warped patterns, which can be viewed as three-dimensional gaussian fields. Second, these textures are cast as solutions to a stochastic partial differential equation (sPDE). This essential step enables real-time, on-the-fly texture synthesis using time-discretized autoregressive processes. It also allows for the derivation of a local motion-energy model, which corresponds to the log likelihood of the probability density. The log likelihoods are essential for the construction of a Bayesian inference framework. We use the dynamic texture model to psychophysically probe speed perception in humans using zoom-like changes in the spatial frequency content of the stimulus. The human data replicate previous findings showing perceived speed to be positively biased by spatial frequency increments. A Bayesian observer who combines a gaussian likelihood centered at the true speed and a spatial frequency dependent width with a "slow-speed prior" successfully accounts for the perceptual bias. More precisely, the bias arises from a decrease in the observer's likelihood width estimated from the experiments as the spatial frequency increases. Such a trend is compatible with the trend of the dynamic texture likelihood width.


Subject(s)
Brain/physiology , Models, Neurological , Motion Perception/physiology , Animals , Bayes Theorem , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...