Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802619

ABSTRACT

The structural properties, mainly the spatial variation of density and chain interaction, of melt-spun polymer optical fibres (POFs) are investigated by small-angle X-ray scattering (SAXS) and compared to Monte-Carlo polymer simulations. The amorphous PMMA POFs had been subjected to a rapid cooling in a water quench right after extrusion in order to obtain a radial refractive-index profile. Four fibre samples with different processing parameters are investigated and the SAXS data analysed via Guinier approach. Distance-distribution functions from the respective equatorial and meridional SAXS data are computed to extract the fibres' nanostructures in the equatorial plane and along the fibre axis, respectively. Temperature profiles of the cooling process are simulated for different locations within the fibre and taken as input for Monte-Carlo simulations of the polymer structure. The simulation results agree with the SAXS measurements in terms of the cooling profile's strong influence on the structural properties of the fibre: slower cooling in the centre of the fibre leads to stronger interchain interaction, but also results in a higher density and more homogenous materials with less optical scattering.

2.
Membranes (Basel) ; 12(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35054562

ABSTRACT

Designing hollow fiber (HF) membrane modules occupies one of the key positions in the development of efficient membrane processes for various purposes. In developing HF membrane modules, it is very important to have a uniform HF distribution and flow mixing in the shell side to significantly improve mass transfer and efficiency. This work suggests the application of different textile 3D HF structures (braided hoses and woven tape fabrics). The 3D structures consist of melt-spun, dense HFs based on poly(4-methyl-1-pentene) (PMP). Since the textile processing of HFs can damage the wall of the fiber or close the fiber bore, the membrane properties of the obtained structures are tested with a CO2/CH4 mixture in the temperature range of 0 to 40 °C. It is shown that HFs within the textile structure keep the same transport and separation characteristics compared to initial HFs. The mechanical properties of the PMP-based HFs allow their use in typical textile processes for the production of various membrane structures, even at a larger scale. PMP-based membranes can find application in separation processes, where other polymeric membranes are not stable. For example, they can be used for the separation of hydrocarbons or gas mixtures with volatile organic compounds.

3.
J Chem Phys ; 146(13): 131101, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28390345

ABSTRACT

We investigate proton-charge mobility in nanoscopic water droplets with tuneable size. We find that the diffusion of confined proton charges causes a dielectric relaxation process with a maximum-loss frequency determined by the diffusion constant. In volumes less than ∼5 nm in diameter, proton-charge diffusion slows down significantly with decreasing size: for diameters <1 nm, the diffusion constant is about 100 times smaller than in bulk water. The low mobility probably results from the more rigid hydrogen-bond network of nanoconfined water, since proton-charge mobility in water relies on collective hydrogen-bond rearrangements.

4.
Polymers (Basel) ; 9(2)2017 Feb 13.
Article in English | MEDLINE | ID: mdl-30970738

ABSTRACT

The structural properties of novel melt-spun polymer optical fibers (POFs) are investigated by small-angle X-ray scattering. The amorphous PMMA POFs were subjected to a rapid cooling in a water quench right after extrusion in order to obtain a radial refractive index profile. Four fiber samples were investigated with small-angle X-ray scattering (SAXS). The resulting distance-distribution functions obtained from the respective equatorial and meridional SAXS data exhibit a real-space correlation peak indicative of periodic cross-sectional and axial variations in the scattering density contrast. Simple model calculations demonstrate how the structural information contained particularly in the equatorial distance distribution function can be interpreted. The respective results are qualitatively verified for one of the fiber samples by comparison of the model curve with the measured SAXS data. Eventually, the study confirms that the cross-sectional variation of the (scattering-) density is the main reason for the formation of radial refractive-index profiles in the POFs.

5.
ACS Appl Mater Interfaces ; 7(40): 22404-12, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26378865

ABSTRACT

Electroconductive fibers composed of cellulose and carbon nanotubes (CNTs) were spun using aqueous alkaline/urea solution. The microstructure and physical properties of the resulting fibers were investigated by scanning electron microscopy, Raman microscopy, wide-angle X-ray diffraction, tensile tests, and electrical resistance measurements. We found that these flexible composite fibers have sufficient mechanical properties and good electrical conductivity, with volume resistivities in the range of about 230-1 Ohm cm for 2-8 wt % CNT loading. The multifunctional sensing behavior of these fibers to tensile strain, temperature, environmental humidity, and liquid water was investigated comprehensively. The results show that these novel CNT/cellulose composite fibers have impressive multifunctional sensing abilities and are promising to be used as wearable electronics and for the design of various smart materials.

6.
J Chem Phys ; 141(18): 18C535, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25399200

ABSTRACT

We study the reorientation dynamics of liquid water confined in nanometer-sized reverse micelles of spherical and cylindrical shape. The size and shape of the micelles are characterized in detail using small-angle x-ray scattering, and the reorientation dynamics of the water within the micelles is investigated using GHz dielectric relaxation spectroscopy and polarization-resolved infrared pump-probe spectroscopy on the OD-stretch mode of dilute HDO:H2O mixtures. We find that the GHz dielectric response of both the spherical and cylindrical reverse micelles can be well described as a sum of contributions from the surfactant, the water at the inner surface of the reversed micelles, and the water in the core of the micelles. The Debye relaxation time of the core water increases from the bulk value τ(H2O) of 8.2 ± 0.1 ps for the largest reverse micelles with a radius of 3.2 nm to 16.0 ± 0.4 ps for the smallest micelles with a radius of 0.7 nm. For the nano-spheres the dielectric response of the water is approximately ∼6 times smaller than expected from the water volume fraction and the bulk dielectric relaxation of water. We find that the dielectric response of nano-spheres is more attenuated than that of nano-tubes of identical composition (water-surfactant ratio), whereas the reorientation dynamics of the water hydroxyl groups is identical for the two geometries. We attribute the attenuation of the dielectric response compared to bulk water to a local anti-parallel ordering of the molecular dipole moments. The difference in attenuation between nano-spheres and nano-cylinders indicates that the anti-parallel ordering of the water dipoles is more pronounced upon spherical than upon cylindrical nanoconfinement.


Subject(s)
Micelles , Nanospheres/chemistry , Nanotubes/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Dielectric Spectroscopy
7.
J Chem Phys ; 137(4): 044503, 2012 Jul 28.
Article in English | MEDLINE | ID: mdl-22852627

ABSTRACT

We study the structure and reorientation dynamics of nanometer-sized water droplets inside nonionic reverse micelles (water/Igepal-CO-520/cyclohexane) with time-resolved mid-infrared pump-probe spectroscopy and small angle x-ray scattering. In the time-resolved experiments, we probe the vibrational and orientational dynamics of the O-D bonds of dilute HDO:H(2)O mixtures in Igepal reverse micelles as a function of temperature and micelle size. We find that even small micelles contain a large fraction of water that reorients at the same rate as water in the bulk, which indicates that the polyethylene oxide chains of the surfactant do not penetrate into the water volume. We also observe that the confinement affects the reorientation dynamics of only the first hydration layer. From the temperature dependent surface-water dynamics, we estimate an activation enthalpy for reorientation of 45 ± 9 kJ mol(-1) (11 ± 2 kcal mol(-1)), which is close to the activation energy of the reorientation of water molecules in ice.


Subject(s)
Cyclohexanes/chemistry , Molecular Dynamics Simulation , Surface-Active Agents/chemistry , Water/chemistry , Micelles , Molecular Structure , Scattering, Small Angle , Spectrophotometry, Infrared , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...