Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nutr ; 57(6): 2171-2187, 2018 Sep.
Article in English | MEDLINE | ID: mdl-28676973

ABSTRACT

PURPOSE: Consumption of Western diet high in fat and fructose has been attributed to the recent epidemic of nonalcoholic fatty liver disease (NAFLD). However, the impact of specific fatty acids on the progression of NAFLD to nonalcoholic steatohepatitis (NASH) is poorly understood. In the present study, we investigated the chronic effects of consumption of fructose in combination with saturated fatty acids (SFA) or trans fatty acids (TFA) on the development of NAFLD. METHODS: Male Sprague-Dawley rats were randomly assigned to six isocaloric starch/high fructose (44% of calories), high fat (39% calories) diet containing either starch-peanut oil, fructose-peanut oil, fructose-palmolein, fructose-clarified butter, fructose-coconut oil or fructose-partially hydrogenated vegetable oil and fed for 24 weeks. Palmolein, clarified butter and coconut oil were used as the source of SFA whereas partially hydrogenated vegetable oil was used as the source of TFA. Peanut oil was used as the reference oil. RESULTS: Long-term feeding of fructose in combination with SFA or TFA induced hepatic steatosis of similar extent associated with upregulation of stearoyl CoA desaturase-1. In contrast, fructose in combination with TFA induced NASH with fibrosis as evidenced by upregulation of hepatic proinflammatory cytokine and fibrogenic gene expression, increased hepatic oxidative stress and adipocytokine imbalance. Histopathological analysis revealed the presence of NASH with fibrosis. Further, peanut oil prevented the development of NAFLD in fructose-fed rats. CONCLUSION: Fructose in combination with TFA caused NASH with fibrosis by inducing oxidative stress and inflammation, whereas, fructose in combination with SFA caused simple steatosis, suggesting that the type of fatty acid is more important for the progression of NAFLD.


Subject(s)
Fructose/adverse effects , Non-alcoholic Fatty Liver Disease/etiology , Trans Fatty Acids/adverse effects , Animals , Fatty Acids/administration & dosage , Fructose/administration & dosage , India , Liver , Male , Rats , Rats, Sprague-Dawley , Trans Fatty Acids/administration & dosage
2.
J Nutr Metab ; 2016: 7510840, 2016.
Article in English | MEDLINE | ID: mdl-27818793

ABSTRACT

Background. Increased fructose consumption is linked to the development of metabolic syndrome (MS). Here we investigated the time course of development of MS features in high-fructose-fed Sprague Dawley rats along with circulatory testosterone and homocysteine levels. Methods. Rats were divided into control and experimental groups and fed with diets containing 54.5% starch and fructose, respectively, for 4, 12, and 24 weeks. Plasma testosterone and homocysteine levels were measured along with insulin, glucose, and lipids. Body composition, insulin resistance, and hepatic lipids were measured. Results. Increase in hepatic triglyceride content was first observed in metabolic disturbance followed by hypertriglyceridemia and systemic insulin resistance in fructose-fed rats. Hepatic lipids were increased in time-dependent manner by fructose-feeding starting from 4 weeks, but circulatory triglyceride levels were increased after 12 weeks. Fasting insulin and Homeostatis Model Assessment of Insulin Resistance (HOMA-IR) were increased after 12 weeks of fructose-feeding. Decreased visceral adiposity, circulatory testosterone, and homocysteine levels were observed after 4 weeks of fructose-feeding, which were normalized at 12 and 24 weeks. Conclusions. We conclude that transient decrease in circulatory testosterone and homocysteine levels and increased hepatic triglyceride content are the earliest metabolic disturbances that preceded hypertriglyceridemia and insulin resistance in fructose-fed SD rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...