Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Mol Psychiatry ; 20(11): 1350-65, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25385366

ABSTRACT

An increasing number of genetic variants have been implicated in autism spectrum disorders (ASDs), and the functional study of such variants will be critical for the elucidation of autism pathophysiology. Here, we report a de novo balanced translocation disruption of TRPC6, a cation channel, in a non-syndromic autistic individual. Using multiple models, such as dental pulp cells, induced pluripotent stem cell (iPSC)-derived neuronal cells and mouse models, we demonstrate that TRPC6 reduction or haploinsufficiency leads to altered neuronal development, morphology and function. The observed neuronal phenotypes could then be rescued by TRPC6 complementation and by treatment with insulin-like growth factor-1 or hyperforin, a TRPC6-specific agonist, suggesting that ASD individuals with alterations in this pathway may benefit from these drugs. We also demonstrate that methyl CpG binding protein-2 (MeCP2) levels affect TRPC6 expression. Mutations in MeCP2 cause Rett syndrome, revealing common pathways among ASDs. Genetic sequencing of TRPC6 in 1041 ASD individuals and 2872 controls revealed significantly more nonsynonymous mutations in the ASD population, and identified loss-of-function mutations with incomplete penetrance in two patients. Taken together, these findings suggest that TRPC6 is a novel predisposing gene for ASD that may act in a multiple-hit model. This is the first study to use iPSC-derived human neurons to model non-syndromic ASD and illustrate the potential of modeling genetically complex sporadic diseases using such cells.


Subject(s)
Autistic Disorder/pathology , Neurons/pathology , TRPC Cation Channels/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/metabolism , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Carboplatin/metabolism , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , Cells, Cultured , Child , Disease Models, Animal , Embryo, Mammalian , Etoposide/metabolism , Gene Expression Regulation/genetics , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/physiology , Inhibitory Postsynaptic Potentials/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitoxantrone/metabolism , Mutation/genetics , Neurons/metabolism , Prednisolone/metabolism , Signal Transduction/genetics , TRPC Cation Channels/genetics , TRPC6 Cation Channel
3.
Brain Res ; 1250: 14-9, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19038234

ABSTRACT

Autism spectrum disorders (ASD) is a group of behaviorally defined neurodevelopmental disabilities characterized by multiple genetic etiologies and a complex presentation. Several studies suggest the involvement of the serotonin system in the development of ASD, but only few have investigated serotonin receptors. We have performed a case-control and a family-based study with 9 polymorphisms mapped to two serotonin receptor genes (HTR1B and HTR2C) in 252 Brazilian male ASD patients of European ancestry. These analyses showed evidence of undertransmission of the HTR1B haplotypes containing alleles -161G and -261A at HTR1B gene to ASD (P=0.003), but no involvement of HTR2C to the predisposition to this disease. Considering the relatively low level of statistical significance and the power of our sample, further studies are required to confirm the association of these serotonin-related genes and ASD.


Subject(s)
Autistic Disorder/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT2C/genetics , Alleles , Brazil , Case-Control Studies , Family , Genotype , Haplotypes , Humans , Male , Sequence Analysis, DNA
5.
Orv Hetil ; 113(13): 764-5, 1972 Mar 26.
Article in Hungarian | MEDLINE | ID: mdl-5021355
SELECTION OF CITATIONS
SEARCH DETAIL
...