Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 29(7): 2028-2040.e8, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31722215

ABSTRACT

In developing neurons, phosphoinositide 3-kinases (PI3Ks) control axon growth and branching by positively regulating PI3K/PI(3,4,5)P3, but how neurons are able to generate sufficient PI(3,4,5)P3 in the presence of high levels of the antagonizing phosphatase PTEN is difficult to reconcile. We find that normal axon morphogenesis involves homeostasis of elongation and branch growth controlled by accumulation of PI(3,4,5)P3 through PTEN inhibition. We identify a plasma membrane-localized protein-protein interaction of PTEN with plasticity-related gene 2 (PRG2). PRG2 stabilizes membrane PI(3,4,5)P3 by inhibiting PTEN and localizes in nanoclusters along axon membranes when neurons initiate their complex branching behavior. We demonstrate that PRG2 is both sufficient and necessary to account for the ability of neurons to generate axon filopodia and branches in dependence on PI3K/PI(3,4,5)P3 and PTEN. Our data indicate that PRG2 is part of a neuronal growth program that induces collateral branch growth in axons by conferring local inhibition of PTEN.


Subject(s)
Axons/metabolism , Membrane Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Animals , COS Cells , Chlorocebus aethiops , Female , Humans , Male , Membrane Proteins/genetics , Mice , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol Phosphates/metabolism
2.
Cell Rep ; 25(11): 3169-3179.e7, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30540948

ABSTRACT

Importins mediate transport from synapse to soma and from cytoplasm to nucleus, suggesting that perturbation of importin-dependent pathways should have significant neuronal consequences. A behavioral screen on five importin α knockout lines revealed that reduced expression of importin α5 (KPNA1) in hippocampal neurons specifically decreases anxiety in mice. Re-expression of importin α5 in ventral hippocampus of knockout animals increased anxiety behaviors to wild-type levels. Hippocampal neurons lacking importin α5 reveal changes in presynaptic plasticity and modified expression of MeCP2-regulated genes, including sphingosine kinase 1 (Sphk1). Knockout of importin α5, but not importin α3 or α4, reduces MeCP2 nuclear localization in hippocampal neurons. A Sphk1 blocker reverses anxiolysis in the importin α5 knockout mouse, while pharmacological activation of sphingosine signaling has robust anxiolytic effects in wild-type animals. Thus, importin α5 influences sphingosine-sensitive anxiety pathways by regulating MeCP2 nuclear import in hippocampal neurons.


Subject(s)
Anxiety/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , alpha Karyopherins/metabolism , Animals , Anti-Anxiety Agents/pharmacology , Behavior, Animal , Carbolines/pharmacology , Hippocampus/pathology , Mice, Knockout , Neurons/metabolism , Phenotype , Synapses/metabolism , Transcription, Genetic , alpha Karyopherins/deficiency
3.
Neurosci Lett ; 644: 76-82, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28237805

ABSTRACT

The adult rodent piriform cortex has been reported to harbor immature neurons that express markers associated with neurodevelopment and plasticity, namely polysialylated neural cell adhesion molecule (PSA-NCAM) and doublecortin (DCX). We characterized the expression of PSA-NCAM and DCX across the rostrocaudal axis of the rat piriform cortex and observed higher numbers of PSA-NCAM and DCX positive cells in the posterior subdivision. As observed in the rat piriform cortex, Nestin-GFP reporter mice also revealed a similar gradient of GFP-positive cells with an increasing rostro-caudal gradient of expression. Given the extensive noradrenergic innervation of the piriform cortex and its role in regulating piriform cortex function and synaptic plasticity, we addressed the influence of norepinephrine (NE) on piriform cortex plasticity marker expression. Depletion of NE by treatment with the noradrenergic neurotoxin DSP-4 significantly increased the number of DCX and PSA-NCAM immunopositive cells in the piriform cortex of adult rats. Similarly, DSP-4 treated Nestin-GFP reporter mice revealed a robust induction of GFP-positive cells within the piriform cortex following NE depletion. Genetic loss of NE in dopamine ß-hydroxylase knockout (Dbh -/-) mice phenocopied the effects of DSP-4, with an increase noted in PSA-NCAM and DCX positive cells in the piriform cortex. Further, chronic α2-adrenergic receptor stimulation with the agonist guanabenz increased PSA-NCAM and DCX positive cells in the piriform cortex of adult rats and GFP-positive cells in the piriform cortex of Nestin-GFP mice. By contrast, chronic α2-adrenergic receptor blockade with the antagonist yohimbine reduced PSA-NCAM and DCX positive cells in the piriform cortex of adult rats. Our results provide novel evidence for a role of NE in regulating the expression of plasticity markers, including PSA-NCAM, DCX, and nestin, within the adult mouse and rat piriform cortex.


Subject(s)
Neuronal Plasticity/physiology , Norepinephrine/metabolism , Piriform Cortex/metabolism , Animals , Biomarkers/analysis , Doublecortin Domain Proteins , Doublecortin Protein , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/biosynthesis , Nestin/biosynthesis , Neural Cell Adhesion Molecules/biosynthesis , Neuropeptides/biosynthesis , Rats , Rats, Wistar
4.
Elife ; 52016 10 26.
Article in English | MEDLINE | ID: mdl-27782879

ABSTRACT

Mutations in the MECP2 gene cause the neurodevelopmental disorder Rett syndrome (RTT). Previous studies have shown that altered MeCP2 levels result in aberrant neurite outgrowth and glutamatergic synapse formation. However, causal molecular mechanisms are not well understood since MeCP2 is known to regulate transcription of a wide range of target genes. Here, we describe a key role for a constitutive BDNF feed forward signaling pathway in regulating synaptic response, general growth and differentiation of glutamatergic neurons. Chronic block of TrkB receptors mimics the MeCP2 deficiency in wildtype glutamatergic neurons, while re-expression of BDNF quantitatively rescues MeCP2 deficiency. We show that BDNF acts cell autonomous and autocrine, as wildtype neurons are not capable of rescuing growth deficits in neighboring MeCP2 deficient neurons in vitro and in vivo. These findings are relevant for understanding RTT pathophysiology, wherein wildtype and mutant neurons are intermixed throughout the nervous system.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Neurons/physiology , Signal Transduction , Animals , Cell Differentiation , Cell Proliferation , Disease Models, Animal , Male , Methyl-CpG-Binding Protein 2/genetics , Mice, Inbred C57BL , Mice, Knockout , Rett Syndrome/physiopathology
5.
J Neurosci ; 35(23): 8701-17, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26063905

ABSTRACT

The cerebellum is crucial for sensorimotor coordination. The cerebellar architecture not only requires proper development but also long-term integrity to ensure accurate functioning. Developmental defects such as impaired neuronal migration or neurodegeneration are thus detrimental to the cerebellum and can result in movement disorders including ataxias. In this study, we identify FBXO41 as a novel CNS-specific F-box protein that localizes to the centrosome and the cytoplasm of neurons and demonstrate that cytoplasmic FBXO41 promotes neuronal migration. Interestingly, deletion of the FBXO41 gene results in a severely ataxic gait in mice, which show delayed neuronal migration of granule neurons in the developing cerebellum in addition to deformities and degeneration of the mature cerebellum. We show that FBXO41 is a critical factor, not only for neuronal migration in the cerebellum, but also for its long-term integrity.


Subject(s)
Brain/pathology , Cell Movement/genetics , F-Box Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Neurons/pathology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Animals , Animals, Newborn , Cell Survival/genetics , Cells, Cultured , Disease Models, Animal , Embryo, Mammalian , F-Box Proteins/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , Mice, Transgenic , Mutation/genetics , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Neurons/metabolism , Phenotype , Subcellular Fractions/metabolism
6.
J Vis Exp ; (85)2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24686379

ABSTRACT

Developmental events in the brain including neuronal morphogenesis and migration are highly orchestrated processes. In vitro and in vivo analyses allow for an in-depth characterization to identify pathways involved in these events. Cerebellar granule neurons (CGNs) that are derived from the developing cerebellum are an ideal model system that allows for morphological analyses. Here, we describe a method of how to genetically manipulate CGNs and how to study axono- and dendritogenesis of individual neurons. With this method the effects of RNA interference, overexpression or small molecules can be compared to control neurons. In addition, the rodent cerebellar cortex is an easily accessible in vivo system owing to its predominant postnatal development. We also present an in vivo electroporation technique to genetically manipulate the developing cerebella and describe subsequent cerebellar analyses to assess neuronal morphology and migration.


Subject(s)
Cell Movement/physiology , Cerebellum/physiology , Electroporation/methods , Neurons/physiology , Transfection/methods , Animals , Axons/physiology , Cerebellum/cytology , Dendrites/physiology , Neurons/cytology , Rats
7.
PLoS One ; 8(2): e57530, 2013.
Article in English | MEDLINE | ID: mdl-23469015

ABSTRACT

Neuronal development requires proper migration, polarization and establishment of axons and dendrites. Growing evidence identifies the ubiquitin proteasome system (UPS) with its numerous components as an important regulator of various aspects of neuronal development. F-box proteins are interchangeable subunits of the Cullin-1 based E3 ubiquitin ligase, but only a few family members have been studied. Here, we report that the centrosomal E3 ligase FBXO31-SCF (Skp1/Cullin-1/F-box protein) regulates neuronal morphogenesis and axonal identity. In addition, we identified the polarity protein Par6c as a novel interaction partner and substrate targeted for proteasomal degradation in the control of axon but not dendrite growth. Finally, we ascribe a role for FBXO31 in dendrite growth and neuronal migration in the developing cerebellar cortex. Taken together, we uncovered the centrosomal E3 ligase FBXO31-SCF as a novel regulator of neuronal development.


Subject(s)
Cell Movement , Centrosome/enzymology , F-Box Proteins/metabolism , Morphogenesis , Neurons/cytology , SKP Cullin F-Box Protein Ligases/metabolism , Tumor Suppressor Proteins/metabolism , Base Sequence , DNA Primers , Electroporation , HEK293 Cells , Humans , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...