Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 23(2): 229-38, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22076528

ABSTRACT

The mechanical properties of bioceramic conformed pieces based on micelle-templated silica (MTS) such as SBA15, MCM41 and MCM48 as well as MTS/agarose systems have been evaluated under static and cyclic compressive tests. The MTS pieces exhibited a brittle behaviour. Agarose, a biocompatible and biodegradable hydrogel, has been used to shape ceramic-agarose pieces following a low temperature shaping method. Agarose conferred toughness, ductility and a rubbery consistency up to a 60% strain in ceramic MTS/agarose systems leading to a maximum strength of 10-50 MPa, without losing their initial cylindrical structure. This combination of ceramic and organic matrix contributes to avoiding the inherent brittleness of the bioceramic and enhances the compression resistance of hydrogel. The presence of mechanical hysteresis, permanent deformation after the first cycle and recovery of the master monotonous curve of MTS/agarose systems indicate a Mullins-like effect similar to that found in carbon-filled rubber systems. We report this type of mechanical behaviour, the Mullins effect, for the first time in MTS bioceramics and MTS bioceramic/agarose systems.


Subject(s)
Micelles , Sepharose/chemistry , Silicon Dioxide/chemistry , Biocompatible Materials/chemistry , Carbon/chemistry , Ceramics/chemistry , Compressive Strength , Hydrogels/chemistry , Materials Testing , Mechanical Phenomena , Microscopy, Electron, Scanning/methods , Organic Chemicals/chemistry , Pressure , Rubber/chemistry , Stress, Mechanical , Temperature
2.
Acta Biomater ; 7(2): 841-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20709633

ABSTRACT

There is an acknowledged need for shaping 3-D scaffolds with adequate porosity and mechanical properties for biomedical applications. The mechanical properties under static and cyclic compressive testing of dense and designed porous architecture bioceramic scaffolds based on the biphasic calcium phosphate (BCP) systems and BCP-agarose systems have been evaluated. The dense and designed porous architecture scaffolds in BCP systems exhibited a brittle behaviour. Agarose, a biocompatible and biodegradable hydrogel, has been used to shape designed architecture ceramic-agarose scaffolds following a low-temperature shaping method. Agarose conferred toughness, ductility and a rubbery consistency for strains of up to 60% of in ceramic BCP-agarose systems. This combination of ceramic and organic matrix helps to avoid the inherent brittleness of the bioceramic and enhances the compression resistance of hydrogel. The presence of mechanical hysteresis, permanent deformation after the first cycle and recovery of the master monotonous curve indicate a Mullins-like effect such as that observed in carbon-filled rubber systems. We report this type of mechanical behaviour, the Mullins effect, for the first time in bioceramics and bioceramic-agarose systems.


Subject(s)
Bone Regeneration/drug effects , Calcium Phosphates/pharmacology , Compressive Strength/drug effects , Materials Testing , Sepharose/pharmacology , Tissue Scaffolds/chemistry , Calcium Phosphates/chemistry , Microscopy, Electron, Scanning , Particle Size , Porosity/drug effects , Temperature , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...