Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 222: 114866, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36463651

ABSTRACT

The level of hearing restoration in patients with severe to profound sensorineural hearing loss by means of cochlear implants (CIs) has drastically risen since the introduction of these neuroprosthetics. The proposed CI integrated with polymer optical fiber Bragg gratings (POFBGs) enables real-time evaluation of insertion forces and trajectory determination during implantation irrespective of the speed of insertion, as well as provides high signal quality, low stiffness levels, minimum induced stress even under forces of high magnitudes and exhibits significant reduction of the risk of fiber breakage inside the constricted cochlear geometry. As such, the proposed device opens new avenues towards atraumatic cochlear implantations and provides a direct route for the next generation of CIs with intraoperative insertion force assessment and path planning capacity crucial for surgical navigation. Hence, adaptation of this technology to clinical reality holds promising prospects for the hearing impaired.


Subject(s)
Biosensing Techniques , Cochlear Implantation , Cochlear Implants , Humans , Hearing , Cochlea/surgery
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4700-4704, 2021 11.
Article in English | MEDLINE | ID: mdl-34892261

ABSTRACT

In conventional Minimally Invasive Surgery, the surgeon conducts the operation while a human or robot holds the laparoscope. Laparoscope control is returned to the surgeon in teleoperated camera holding robots, but simultaneously controlling the laparoscope and surgical tools might be cognitively demanding. On the other hand, fully automated camera holders are still limited in their performance. To help the surgeon to better focus on the main operation while maintaining their control authority, we propose an automatic laparoscope zoom factor control framework for Robot-Assisted Minimally Invasive Surgery. In this paper, we present the perception section of the framework. It extracts and uses the surgical tool's geometric characteristics to adjust the laparoscope's zoom factor, without any artificial markers. The acceptable range and tooltip's position frequency during operations are analysed based on the gallbladder removal surgery dataset (Cholec80). The common range and tooltip's heatmap are identified and presented quantitatively.


Subject(s)
Laparoscopes , Minimally Invasive Surgical Procedures , Humans , Perception
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3819-3822s, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946706

ABSTRACT

Cochlear Implant is used for patients with severe hearing loss. It is a neural-prosthesis that stimulates the nerve endings within the cochlea, which is the organ of hearing. The surgical technique involves inserting the electrode array of the implant into a very small "snail-like" spiral structure. During this insertion process, the surgeon's finger tip is not able to perceive the resistance from the contact of the implant and the cochlea's internal structure, below the internal rupture threshold. This can potentially damage vital structures and result in the worsening of residual hearing and poor speech perception. Currently, there is no clinically and commercially available intra-operative force feedback system. A custom made sensor is therefore proposed, integrated within the implant to enable real-time force readings. The device will provide surgeons with the vital force feedback information related to the implants' position within the cochlea. This paper concentrates on demonstrating that the proposed sensor is capable of measuring the contact force below the rupture threshold of the cochlea's internal structure.


Subject(s)
Cochlear Implantation , Cochlear Implants , Hearing Loss/surgery , Cochlea , Hearing Tests , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...