Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806277

ABSTRACT

Oxygen, as an external environmental factor, plays a role in the early differentiation of human stem cells, such as induced pluripotent stem cells (hiPSCs). However, the effect of oxygen concentration on the early-stage differentiation of hiPSC is not fully understood, especially in 3D aggregate cultures. In this study, we cultivated the 3D aggregation of hiPSCs on oxygen-permeable microwells under different oxygen concentrations ranging from 2.5 to 20% and found that the aggregates became larger, corresponding to the increase in oxygen level. In a low oxygen environment, the glycolytic pathway was more profound, and the differentiation markers of the three germ layers were upregulated, suggesting that the oxygen concentration can function as a regulator of differentiation during the early stage of development. In conclusion, culturing stem cells on oxygen-permeable microwells may serve as a platform to investigate the effect of oxygen concentration on diverse cell fate decisions during development.


Subject(s)
Induced Pluripotent Stem Cells , Cell Culture Techniques , Cell Culture Techniques, Three Dimensional , Cell Differentiation , Humans , Oxygen/metabolism
2.
ACS Nano ; 13(10): 11572-11581, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31433939

ABSTRACT

Implantable electronics are of great interest owing to their capability for real-time and continuous recording of cellular-electrical activity. Nevertheless, as such systems involve direct interfaces with surrounding biofluidic environments, maintaining their long-term sustainable operation, without leakage currents or corrosion, is a daunting challenge. Herein, we present a thin, flexible semiconducting material system that offers attractive attributes in this context. The material consists of crystalline cubic silicon carbide nanomembranes grown on silicon wafers, released and then physically transferred to a final device substrate (e.g., polyimide). The experimental results demonstrate that SiC nanomembranes with thicknesses of 230 nm do not experience the hydrolysis process (i.e., the etching rate is 0 nm/day at 96 °C in phosphate-buffered saline (PBS)). There is no observable water permeability for at least 60 days in PBS at 96 °C and non-Na+ ion diffusion detected at a thickness of 50 nm after being soaked in 1× PBS for 12 days. These properties enable Faradaic interfaces between active electronics and biological tissues, as well as multimodal sensing of temperature, strain, and other properties without the need for additional encapsulating layers. These findings create important opportunities for use of flexible, wide band gap materials as essential components of long-lived neurological and cardiac electrophysiological device interfaces.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Platinum/chemistry , Silicon Compounds/chemistry , Electronics , Temperature
3.
Chem Commun (Camb) ; 55(55): 7978-7981, 2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31225573

ABSTRACT

This work presents crystalline SiC-on-glass as a transparent, robust, and optically stable electrode for simultaneous electrochemical characterization and optical microscope imaging. Experimental results show a large potential window, as well as excellent stability and repeatability over multiple cyclic voltammetric scans in common redox biomarkers such as ruthenium hexaammine and methylene blue. The high optical transmittance and biocompatibility of SiC-on-glass were also observed, enabling cell culture, electrical stimulation, and high resolution fluorescence imaging. This new platform opens exciting opportunities in multi-functional biosensing-probes and observation.

4.
Article in English | MEDLINE | ID: mdl-23056140

ABSTRACT

Betulinic acid is a widely available plant-derived triterpene which is reported to possess selective cytotoxic activity against cancer cells of neuroectodermal origin and leukemia. However, the potential of betulinic acid as an antiproliferative and cytotoxic agent on vascular smooth muscle (VSMC) is still unclear. This study was carried out to demonstrate the antiproliferative and cytotoxic effect of betulinic acid on VSMCs using 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry cell cycle assay, BrdU proliferation assay, acridine orange/propidium iodide staining, and comet assay. Result from MTT and BrdU assays indicated that betulinic acid was able to inhibit the growth and proliferation of VSMCs in a dose-dependent manner with IC(50) of 3.8 µg/mL significantly (P < 0.05). Nevertheless, betulinic acid exhibited G(1) cell cycle arrest in flow cytometry cell cycle profiling and low level of DNA damage against VSMC in acridine orange/propidium iodide and comet assay after 24 h of treatment. In conclusion, betulinic acid induced G(1) cell cycle arrest and dose-dependent DNA damage on VSMC.

SELECTION OF CITATIONS
SEARCH DETAIL
...