Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Publication year range
1.
Genes (Basel) ; 15(1)2024 01 18.
Article in English | MEDLINE | ID: mdl-38255009

ABSTRACT

GNAS-activating somatic mutations give rise to Fibrous Dysplasia/McCune-Albright syndrome (FD/MAS). The low specificity of extra-skeletal signs of MAS and the mosaic status of the mutations generate some difficulties for a proper diagnosis. We studied the clinical and molecular statuses of 40 patients referred with a clinical suspicion of FD/MAS to provide some clues. GNAS was sequenced using both Sanger and Next-Generation Sequencing (NGS). We were able to identify the pathogenic variants in 25% of the patients. Most of them were identified in the affected tissue, but not in blood. Additionally, NGS demonstrated the ability to detect more patients with mosaicism (8/34) than Sanger sequencing (4/39). Even if in some cases, the clinical information was not complete, we confirmed that, as in previous works, when the patients were young children with a single manifestation, such as hyperpigmented skin macules or precocious puberty, the molecular diagnosis was usually negative. In conclusion, as FD/MAS is caused by mosaic variants, it is essential to use sensitive techniques that allow for the detection of low percentages and to choose the right tissue to study. When not possible, and due to the low positive genetic rate, patients with FD/MAS should only be genetically tested when the clinical diagnosis is really uncertain.


Subject(s)
Fibrous Dysplasia, Polyostotic , Mosaicism , Child , Humans , Child, Preschool , Fibrous Dysplasia, Polyostotic/diagnosis , Fibrous Dysplasia, Polyostotic/genetics , Mutation , High-Throughput Nucleotide Sequencing , Skin
2.
Front Endocrinol (Lausanne) ; 13: 1055431, 2022.
Article in English | MEDLINE | ID: mdl-36686455

ABSTRACT

Objective: iPPSD2 (which includes PHP1A and PPHP/POH) is a rare inherited autosomal dominant endocrine disorder caused by inactivating GNAS pathogenic variants. A high percentage of de novo cases has been suggested. In rare cases, parental mosaicism has been described, but its real frequency is unknown. Design: A retrospective study including a series of 95 genetically confirmed iPPSD2 probands. Methods: The frequency of de novo cases was evaluated and the distribution of the type of variants was compared according to the type of inheritance. The putative involved allele was determined by reverse transcriptase PCR (RT-PCR) or allele specific oligonucleotide RT-PCR (ASO-RT-PCR). The possibility of GNAS mosaicism was studied by next-generation sequencing (NGS) on the corresponding parental DNA. Results: In 41 patients the variant was of de novo origin and in 24 the origin could not be established. In both cases 66.67% of variants generated a truncated or absent protein whereas the rest of the variants were missense or in-frame deletion/duplication. Parental origin was studied in 45 of those patients and determined in 35. Curiously, the percentage of de novo variants at the paternal allele was higher than when paternally inherited (31.1% vs 6.67%). NGS detected mosaicism in three independent families: one from paternal DNA (allelic ratio 10%) and two from maternal DNA (allelic ratio 10% and 2%). Conclusion: De novo pathogenic variants are frequent in iPPSD2 (around 45%). Parental mosaicism is infrequent (8.11%) but should be analyzed with NGS, taking into account its importance in genetic counselling.


Subject(s)
Mosaicism , Parathyroid Hormone-Related Protein , Humans , Retrospective Studies , Mutation , Parents , DNA/genetics
3.
Eur J Neurol ; 28(9): 2901-2906, 2021 09.
Article in English | MEDLINE | ID: mdl-34060706

ABSTRACT

BACKGROUND AND PURPOSE: Sporadic Creutzfeldt-Jakob disease is a rapidly progressing and highly variable neurodegenerative disease with heterogeneous clinical presentation and a median survival time from diagnosis to death of 4-6 months. METHODS: We report a rare case of a 61-year-old woman with a history of initially rapidly progressive dementia, with subsequent development of pyramidal and extrapyramidal signs and with an unusually long survival period of 14 years. Initial magnetic resonance imaging evaluation, single-photon emission computed tomography, and electroencephalogram did not show relevant alterations. RESULTS: The postmortem examination of the brain showed diffuse spongiform change, gliosis, and neuronal loss along with abnormal immunostaining of prion protein in the grey matter, especially in the cerebellum. Indirect PRNP genetic analysis was negative. CONCLUSIONS: This case is, to our knowledge, the sporadic Creutzfeldt-Jakob disease patient with the longest survival period ever documented. This surprisingly long duration highlights the importance of histopathological confirmation with brain autopsies for suspected cases, as the disease can easily be misdiagnosed in such slowly progressing cases.


Subject(s)
Creutzfeldt-Jakob Syndrome , Neurodegenerative Diseases , Prions , Brain/diagnostic imaging , Brain/metabolism , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/genetics , Female , Humans , Magnetic Resonance Imaging , Middle Aged
4.
Pharmaceutics ; 13(5)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064902

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) are stem cells present in adult tissues. They can be cultured, have great growth capacity, and can differentiate into several cell types. The isolation of urine-derived mesenchymal stem cells (hUSCs) was recently described. hUSCs present additional benefits in the fact that they can be easily obtained noninvasively. Regarding gene delivery, nonviral vectors based on cationic niosomes have been used and are more stable and have lower immunogenicity than viral vectors. However, their transfection efficiency is low and in need of improvement. METHODS: We isolated hUSCs from urine, and the cell culture was tested and characterized. Different cationic niosomes were elaborated using reverse-phase evaporation, and they were physicochemically characterized. Then, they were screened into hUSCs for transfection efficiency, and their internalization was evaluated. RESULTS: GPxT-CQ at a lipid/DNA ratio of 5:1 (w/w) had the best transfection efficiency. Intracellular localization studies confirmed that nioplexes entered mainly via caveolae-mediated endocytosis. CONCLUSIONS: In conclusion, we established a protocol for hUSC isolation and their transfection with cationic niosomes, which could have relevant clinical applications such as in gene therapy. This methodology could also be used for creating cellular models for studying and validating pathogenic genetic variants, and even for performing functional studies. Our study increases knowledge about the internalization of tested cationic niosomes in these previously unexplored cells.

5.
Genes (Basel) ; 11(12)2020 12 05.
Article in English | MEDLINE | ID: mdl-33291420

ABSTRACT

Silver-Russell syndrome (SRS) is a rare growth-related genetic disorder that is mainly associated with prenatal and postnatal growth retardation. Molecular causes are not clear in all cases, the most common ones being loss of methylation on chromosome 11p15 (≈50%) and maternal uniparental disomy for chromosome 7 (upd(7)mat) (≈10%). However, pathogenic variants in genes such as CDKN1C, HMGA2, IGF2, or PLAG1 have also been described. Previously, two families and one sporadic case have been reported with PLAG1 alterations. Here, we present a case of a female with clinical suspicion of SRS (i.e., intrauterine and postnatal growth retardation, triangular face, psychomotor delay, speech delay, feeding difficulties). No alterations in methylation or copy number were detected at chromosomes 11p15 and 7 using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The custom panel study by next-generation sequencing (NGS) revealed a frameshift variant in the PLAG1 gene (NM_002655.3:c.551delA; p.(Lys184Serfs *45)). Familial studies confirmed that the variant was inherited from the mother and it was also present in other family members. New evidence of pathogenic alterations in the HMGA2-PLAG1-IGF2 pathway suggest the importance of studying and taking into account these genes as alternative molecular causes of Silver-Russell syndrome.


Subject(s)
DNA-Binding Proteins/genetics , Family , Frameshift Mutation , Silver-Russell Syndrome/genetics , Child , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 11/metabolism , Chromosomes, Human, Pair 7/genetics , Chromosomes, Human, Pair 7/metabolism , DNA-Binding Proteins/metabolism , Female , Humans , Silver-Russell Syndrome/metabolism
6.
BMC Med Genomics ; 11(1): 124, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30587166

ABSTRACT

BACKGROUND: Silver-Russell Syndrome (SRS) is a rare growth-related genetic disorder mainly characterized by prenatal and postnatal growth failure. Although molecular causes are not clear in all cases, the most common mechanisms involved in SRS are loss of methylation on chromosome 11p15 (≈50%) and maternal uniparental disomy for chromosome 7 (upd(7)mat) (≈10%). CASE PRESENTATION: We present a girl with clinical suspicion of SRS (intrauterine and postnatal growth retardation, prominent forehead, triangular face, mild psychomotor delay, transient neonatal hypoglycemia, mild hypotonia and single umbilical artery). Methylation and copy number variations at chromosomes 11 and 7 were studied by methylation-specific multiplex ligation-dependent probe amplification and as no alterations were found, molecular karyotyping was performed. A deletion at 5p15.33p15.2 was identified (arr[GRCh37] 5p15.33p15.2(25942-11644643)× 1), similar to those found in patients with Cri-du-chat Syndrome (CdCS). CdCS is a genetic disease resulting from a deletion of variable size occurring on the short arm of chromosome 5 (5p-), whose main feature is a high-pitched mewing cry in infancy, accompanied by multiple congenital anomalies, intellectual disability, microcephaly and facial dysmorphism. CONCLUSIONS: The absence of some CdCS features in the current patient could be due to the fact that in her case the critical regions responsible do not lie within the identified deletion. In fact, a literature review revealed a high degree of concordance between the clinical manifestations of the two syndromes.


Subject(s)
Silver-Russell Syndrome/diagnosis , Child , Chromosomes, Human, Pair 5 , Comparative Genomic Hybridization , Cri-du-Chat Syndrome/diagnosis , Cri-du-Chat Syndrome/genetics , Diagnosis, Differential , Female , Gene Deletion , Humans , Karyotyping , Silver-Russell Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL