Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Sci Educ ; 15(1): 115-126, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33319472

ABSTRACT

Several alternatives to formalin-stored physical specimens have been described in medical literature, but only a few studies have addressed the issue of learning outcomes when these materials were employed. The aim of this study was to conduct a prospective controlled study to assess student performance in learning anatomic pathology when adding three-dimensional (3D) virtual models as adjunct teaching materials in the study of macroscopic lesions. Third-year medical students (n = 501) enrolled at the Victor Babes University of Medicine and Pharmacy in Timisoara, Romania, were recruited to participate. Student performance was assessed through questionnaires. Students performed worse with new method, with poorer results in terms of overall (mean 77.6% ±SD 11.8% vs. 83.6% ±10.5) and individual question scores (percentage of questions with maximum score 34.6% ±25.6 vs. 47.7 ± 24.6). This decreased performance was generalizable, as it was observed across all language divisions and was independent of the teaching assistant involved in the process. In an open-ended feedback evaluation of the new 3D specimens, most students agreed that the new method was better, bringing arguments both for and against these models. Although subjectively the students found the novel teaching materials to be more helpful, their learning performance decreased. A wider implementation as well as exposure to the technique and use of virtual specimens in medical teaching could improve the students' performance outcome by accommodating the needs for novel teaching materials for digital natives.


Subject(s)
Anatomy , Students, Medical , Anatomy/education , Humans , Learning , Prospective Studies , Surveys and Questionnaires
2.
Can J Physiol Pharmacol ; 97(9): 844-849, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31051081

ABSTRACT

Obesity is an important preventable risk factor for morbidity and mortality from cardiometabolic disease. Oxidative stress (including in visceral adipose tissue) and chronic low-grade inflammation are the major underlying pathomechanisms. Monoamine oxidase (MAO) has recently emerged as an important source of cardiovascular oxidative stress. The present study was conducted to evaluate the role of MAO as contributor to reactive oxygen species (ROS) production in white adipose tissue and vessels harvested from patients undergoing elective abdominal surgery. To this aim, visceral adipose tissue and mesenteric artery branches were isolated from obese patients with chronic inflammation and used for organ bath, ROS production, quantitative real-time PCR, and immunohistology studies. The human visceral adipose tissue and mesenteric artery branches contain mainly the MAO-A isoform, as shown by the quantitative real-time PCR and immunohistology experiments. A significant upregulation of MAO-A, the impairment in vascular reactivity, and increase in ROS production were found in obese vs. non-obese patients. Incubation of the adipose tissue samples and vascular rings with the MAO-A inhibitor (clorgyline, 30 min) improved vascular reactivity and decreased ROS generation. In conclusion, MAO-A is the predominant isoform in human abdominal adipose and vascular tissues, is overexpressed in the setting of inflammation, and contributes to the endothelial dysfunction.


Subject(s)
Monoamine Oxidase/metabolism , Obesity/metabolism , Oxidative Stress , Adult , Aged , Chronic Disease , Female , Gene Expression Regulation, Enzymologic , Humans , Inflammation/complications , Intra-Abdominal Fat/metabolism , Male , Mesenteric Arteries/metabolism , Middle Aged , Monoamine Oxidase/genetics , Obesity/complications , Obesity/enzymology , Obesity/genetics , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...