Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 31(45): 5223-31, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24055089

ABSTRACT

In this study we aimed to identify genes that are responsive to pertussis toxin (PTx) and might eventually be used as biological markers in a testing strategy to detect residual PTx in vaccines. By microarray analysis we screened six human cell types (bronchial epithelial cell line BEAS-2B, fetal lung fibroblast cell line MRC-5, primary cardiac microvascular endothelial cells, primary pulmonary artery smooth muscle cells, hybrid cell line EA.Hy926 of umbilical vein endothelial cells and epithelial cell line A549 and immature monocyte-derived dendritic cells) for differential gene expression induced by PTx. Immature monocyte-derived dendritic cells (iMoDCs) were the only cells in which PTx induced significant differential expression of genes. Results were confirmed using different donors and further extended by showing specificity for PTx in comparison to Escherichia coli lipopolysaccharide (LPS) and Bordetella pertussis lipo-oligosaccharide (LOS). Statistical analysis indicated 6 genes, namely IFNG, IL2, XCL1, CD69, CSF2 and CXCL10, as significantly upregulated by PTx which was also demonstrated at the protein level for genes encoding secreted proteins. IL-2 and IFN-γ gave the strongest response. The minimal PTx concentrations that induced production of IL-2 and IFN-γ in iMoDCs were 12.5 and 25IU/ml, respectively. High concentrations of LPS slightly induced IFN-γ but not IL-2, while LOS and detoxified pertussis toxin did not induce production of either cytokine. In conclusion, using microarray analysis we evaluated six human cell lines/types for their responsiveness to PTx and found 6 PTx-responsive genes in iMoDCs of which IL2 is the most promising candidate to be used as a biomarker for the detection of residual PTx.


Subject(s)
Biomarkers, Pharmacological/analysis , Dendritic Cells/drug effects , Gene Expression Profiling , Microarray Analysis , Pertussis Toxin/analysis , Pertussis Vaccine/standards , Technology, Pharmaceutical/methods , Cells, Cultured , Humans , Pertussis Toxin/toxicity
2.
J Lipid Res ; 50(5): 880-4, 2009 May.
Article in English | MEDLINE | ID: mdl-19141870

ABSTRACT

Apolipoprotein AV (apoAV) overexpression causes a decrease in plasma triglyceride (TG) levels, while deficiency of apoAV causes hypertriglyceridemia in both men and mice. However, contrary to what would be expected, plasma apoAV and TG levels in humans are positively correlated. To address this apparent paradox, we determined plasma apoAV levels in various mouse models with median TG levels ranging from 30 mg/dl in wild-type mice to 2089 mg/dl in glycosylphosphatidylinositol-anchored HDL binding protein 1-deficient mice. The data show that apoAV and TG levels are positively correlated in mice (r = +0.798, P < 0.001). In addition, we show that LPL gene transfer caused a simultaneous decrease in TG and apoAV in LPL-deficient mice. The combined data suggest that apoAV levels follow TG levels due to an intimate link between the apoAV molecule and TG-rich lipoproteins, comprising both secretion and removal of these lipoproteins. Taken together, the data suggest that higher plasma apoAV levels reflect an increased demand for plasma TG hydrolysis under normal physiological conditions.


Subject(s)
Apolipoproteins A/blood , Triglycerides/blood , Animals , Apolipoprotein A-V , Humans , Lipoprotein Lipase/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
Horm Res ; 62(5): 233-40, 2004.
Article in English | MEDLINE | ID: mdl-15479984

ABSTRACT

Intrauterine growth restriction (IUGR) is one of the major causes of short stature in child- and adulthood. The cause of IUGR is unknown, however, an impaired uteroplacental function during the second half of human pregnancy might be an important factor, by affecting the programming of somatotropic axis and leading to postnatal growth failure into adulthood. Two rat models with perinatally induced growth retardation were used to examine the long-term effects of perinatal insults on growth. IUGR rats were prepared from pregnant dams, with a bilateral uterine artery ligation at day 17 of their pregnancy. Since the rat is relatively immature at birth, an early postnatal food restriction model was included as another model to broaden the time window of sensitive period of organogenesis. An individual growth curve was calculated of each animal (n = 813). From these individual growth curves the predicted growth curve for each experimental group was calculated by multilevel analysis. The proposed mathematical model allows us to estimate the growth potentials of these rat models with precision and could provide basic information to investigate the relationships among a number of other variables in future studies. Furthermore, we concluded that both pre- and early postnatal malnutrition leads to irreversible slowing down of postnatal growth.


Subject(s)
Fetal Growth Retardation/etiology , Growth Disorders/etiology , Animals , Animals, Newborn , Body Weight , Caloric Restriction , Disease Models, Animal , Female , Humans , Ligation , Male , Malnutrition/complications , Mathematics , Pregnancy , Rats , Rats, Wistar , Uterus/blood supply
SELECTION OF CITATIONS
SEARCH DETAIL
...