Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Signals Sens ; 14: 3, 2024.
Article in English | MEDLINE | ID: mdl-38510672

ABSTRACT

In this article, a patient monitoring system is proposed that is able to obtain heart rate and oxygen saturation (SpO2) levels of patients, identify abnormal conditions, and inform emergency status to the nurses. The proposed monitoring system consists of smart patient wristbands, smart nurse wristbands, central monitoring user interface (UI) software, and a wireless communication network. In the proposed monitoring system, a unique smart wristband is dedicated to each of the patients and nurses. To measure heart rate and SpO2 level, a pulse oximeter sensor is used in the patient wristbands. The output of this sensor is transferred to the wristband's microcontroller where heart rate and SpO2 are calculated through advanced signal processing algorithms. Then, the calculated values are transmitted to central UI software through a wireless network. In the UI software, received values are compared with their normal values and a predefined message is sent to the nurses' wristband if an abnormal condition is identified. Whenever this message is received by a nurse's wristband, an acoustic alarm with vibration is generated to inform an emergency status to the nurse. By doing so, health services are delivered to the patients more quickly and as a result, the probability of the patient recovery is increased effectively.

2.
J Med Signals Sens ; 13(4): 307-318, 2023.
Article in English | MEDLINE | ID: mdl-37809013

ABSTRACT

In this article, a smart visual acuity measurement (VAM) system is designed and implemented. Hardware of the proposed VAM system consists of two parts: a wireless remote controller, and a high-resolution LCD controlled through a Raspberry-Pi mini-computer. In the remote controller, a 3.5" graphical LCD with a touch screen is used as a human-machine interface. When a point is pressed on the touch screen, the unique identifier (ID) code of that point as well as its page number is transmitted to the Raspberry-Pi. In the Raspberry-Pi, data are received and processed by a smart application coded in visual studio software. Then, the commanded tasks are executed by the Raspberry-Pi's operating system. Numerous charts, characters, and pictures are stored in the proposed VAM system to provide various VAM options while the size of the optotypes is adjusted automatically based on the distance of the patient from the LCD. The performance of the proposed VAM system is examined practically under the supervision of an expert optometrist where the results indicate that visual acuity, astigmatism, and color blindness of patients can be examined precisely through the proposed VAM system in an easier and more comfortable manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...