Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Oncogene ; 31(7): 869-83, 2012 Feb 16.
Article in English | MEDLINE | ID: mdl-21765473

ABSTRACT

BRCA1 mutation-associated breast cancer originates in oestrogen receptor-alpha-negative (ER(-)) progenitors in the mammary luminal epithelium. These cells also express high levels of the Kit gene and a recent study demonstrated a correlation between Brca1 loss and Kit over-expression in the mammary epithelium. However, the functional significance of c-Kit expression in the mammary gland is unknown. To address this, c-Kit(-) and c-Kit(+) mammary epithelial subsets were isolated by flow cytometry, characterised for expression of lineage-specific cell markers and functionally analysed by in vitro colony forming and in vivo transplantation assays. The results confirm that the majority of luminal ER(-) progenitors are c-Kit(+), but also that most stem cells and the differentiated cell populations are c-Kit(-). A subset of c-Kit(+) cells with high proliferative potential was found in the luminal ER(+) population, however, suggesting the existence of a distinct luminal ER(+) progenitor cell type. Analysis of mouse Brca1 mammary tumours demonstrated that they expressed Kit and its downstream effector Lyn at levels comparable to the most strongly c-Kit(+) luminal ER(-) progenitors. Consistent with c-Kit being a progenitor cell marker, in vitro three-dimensional differentiation of c-Kit(+) cells resulted in a loss of c-Kit expression, whereas c-Kit over-expression prevented normal differentiation in vivo. Furthermore, c-Kit was a functional marker of proliferative potential, as c-Kit inhibition by short hairpin knockdown prevented normal epithelial growth and caused cells to undergo apoptosis. Therefore, c-Kit defines distinct progenitor populations in the mammary epithelium and is critical for mammary progenitor survival and proliferation. Importantly, c-Kit is only the second mammary epithelial stem/progenitor marker to be shown to have a functional role in the mammary epithelium and the first marker to be shown to be required for progenitor cell function. The c-Kit signalling network has potential as a target for therapy and/or prevention in BRCA1-associated breast cancer.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Cell Proliferation , Mutation , Proto-Oncogene Proteins c-kit/genetics , Animals , Apoptosis/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Differentiation/genetics , Cell Survival/genetics , Cells, Cultured , Epithelial Cells/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , NIH 3T3 Cells , Proto-Oncogene Proteins c-kit/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...